README.md 15.8 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
English | [简体中文](README_ch.md)

Leif's avatar
Leif committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
<p align="center">
 <img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">


------------------------------------------------------------------------------------------

<p align="left">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
    <a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>

WenmuZhou's avatar
WenmuZhou committed
20
## Introduction
Leif's avatar
Leif committed
21

LDOUBLEV's avatar
LDOUBLEV committed
22
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
WenmuZhou's avatar
WenmuZhou committed
23

grasswolfs's avatar
grasswolfs committed
24

WenmuZhou's avatar
WenmuZhou committed
25
**Recent updates**
MissPenguin's avatar
MissPenguin committed
26
27
- 2021.12.21 OCR open source online course starts. The lesson starts at 8:30 every night and lasts for ten days.
- 2021.12.21 release PaddleOCR v2.4, release 1 text detection algorithm (PSENet), 3 text recognition algorithms (NRTR、SEED、SAR), 1 key information extraction algorithm (SDMGR) and 3 DocVQA algorithms (LayoutLM、LayoutLMv2,LayoutXLM).
28
- PaddleOCR R&D team would like to share the key points of PP-OCRv2, at 20:15 pm on September 8th, [Course Address](https://aistudio.baidu.com/aistudio/education/group/info/6758).
DanielYang's avatar
DanielYang committed
29
- 2021.9.7 release PaddleOCR v2.3, [PP-OCRv2](#PP-OCRv2) is proposed. The inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server in CPU device. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile.
Leif's avatar
Leif committed
30
31
32
- 2021.8.3 released PaddleOCR v2.2, add a new structured documents analysis toolkit, i.e., [PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
- 2021.4.8 release end-to-end text recognition algorithm [PGNet](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) which is published in AAAI 2021. Find tutorial [here](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/pgnet_en.md);release multi language recognition [models](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md), support more than 80 languages recognition; especically, the performance of [English recognition model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/models_list_en.md#English) is Optimized.

WenmuZhou's avatar
WenmuZhou committed
33
34
35
- [more](./doc/doc_en/update_en.md)

## Features
grasswolfs's avatar
grasswolfs committed
36
37
38
39
- PP-OCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight PP-OCRv2 series models: detection (3.1M) + direction classifier (1.4M) + recognition 8.5M) = 13.0M
    - Ultra lightweight PP-OCR mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General PP-OCR server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
grasswolfs's avatar
grasswolfs committed
40
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
MissPenguin's avatar
MissPenguin committed
41
42
43
44
45
    - Support multi-language recognition: about 80 languages like Korean, Japanese, German, French, etc
- document structurize system PP-Structure
    - support layout analysis and table recognition (support export to Excel)
    - support key information extraction
    - support DocVQA
grasswolfs's avatar
grasswolfs committed
46
- Rich toolkits related to the OCR areas
grasswolfs's avatar
grasswolfs committed
47
48
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
WenmuZhou's avatar
WenmuZhou committed
49
50
51
52
53
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
54

WenmuZhou's avatar
WenmuZhou committed
55
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
56
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
tink2123's avatar
tink2123 committed
57
58
    <img src="doc/imgs_results/multi_lang/img_01.jpg" width="800">
    <img src="doc/imgs_results/multi_lang/img_02.jpg" width="800">
WenmuZhou's avatar
WenmuZhou committed
59
60
61
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
dyning's avatar
dyning committed
62

LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
66
67
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
Daniel Yang's avatar
Daniel Yang committed
68
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG"  width = "200" height = "200" />
LDOUBLEV's avatar
LDOUBLEV committed
69
70
71
</div>


WenmuZhou's avatar
WenmuZhou committed
72
## Quick Experience
dyning's avatar
dyning committed
73

WenmuZhou's avatar
WenmuZhou committed
74
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
75

WenmuZhou's avatar
WenmuZhou committed
76
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
tink2123's avatar
tink2123 committed
77

WenmuZhou's avatar
WenmuZhou committed
78
 Also, you can scan the QR code below to install the App (**Android support only**)
LDOUBLEV's avatar
LDOUBLEV committed
79

grasswolfs's avatar
grasswolfs committed
80
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
81
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
grasswolfs's avatar
grasswolfs committed
82
</div>
dyning's avatar
dyning committed
83

WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

LDOUBLEV's avatar
LDOUBLEV committed
88

89
## PP-OCR Series Model List(Update on September 8th)
WenmuZhou's avatar
WenmuZhou committed
90
91
92

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
Leif's avatar
Leif committed
93
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) |  ch_PP-OCRv2_xx |Mobile & Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/ch/ch_PP-OCRv2_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
Leif's avatar
Leif committed
94
95
| Chinese and English ultra-lightweight PP-OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar)      |
| Chinese and English general PP-OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar)  |
LDOUBLEV's avatar
LDOUBLEV committed
96

WenmuZhou's avatar
WenmuZhou committed
97

grasswolfs's avatar
grasswolfs committed
98
For more model downloads (including multiple languages), please refer to [PP-OCR series model downloads](./doc/doc_en/models_list_en.md).
WenmuZhou's avatar
WenmuZhou committed
99

LDOUBLEV's avatar
LDOUBLEV committed
100
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
WenmuZhou's avatar
WenmuZhou committed
101
102

## Tutorials
Leif's avatar
Leif committed
103
- [Environment Preparation](./doc/doc_en/environment_en.md)
WenmuZhou's avatar
WenmuZhou committed
104
- [Quick Start](./doc/doc_en/quickstart_en.md)
Leif's avatar
Leif committed
105
- [PaddleOCR Overview and Installation](./doc/doc_en/paddleOCR_overview_en.md)
Leif's avatar
Leif committed
106
107
108
- PP-OCR Industry Landing: from Training to Deployment
    - [PP-OCR Model and Configuration](./doc/doc_en/models_and_config_en.md)
        - [PP-OCR Model Download](./doc/doc_en/models_list_en.md)
109
        - [Python Inference for PP-OCR Model Library](./doc/doc_en/inference_ppocr_en.md)
Leif's avatar
Leif committed
110
    - [PP-OCR Training](./doc/doc_en/training_en.md)
Leif's avatar
Leif committed
111
112
        - [Text Detection](./doc/doc_en/detection_en.md)
        - [Text Recognition](./doc/doc_en/recognition_en.md)
113
114
        - [Text Direction Classification](./doc/doc_en/angle_class_en.md)
        - [Yml Configuration](./doc/doc_en/config_en.md)
Leif's avatar
Leif committed
115
116
117
118
119
120
121
122
123
124
    - Inference and Deployment
        - [C++ Inference](./deploy/cpp_infer/readme_en.md)
        - [Serving](./deploy/pdserving/README.md)
        - [Mobile](./deploy/lite/readme_en.md)
        - [Benchmark](./doc/doc_en/benchmark_en.md)  
- [PP-Structure: Information Extraction](./ppstructure/README.md)
    - [Layout Parser](./ppstructure/layout/README.md)
    - [Table Recognition](./ppstructure/table/README.md)
- Academic Circles
    - [Two-stage Algorithm](./doc/doc_en/algorithm_overview_en.md)
125
    - [PGNet Algorithm](./doc/doc_en/pgnet_en.md)
126
    - [Python Inference](./doc/doc_en/inference_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
127
- Data Annotation and Synthesis
grasswolfs's avatar
grasswolfs committed
128
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
dyning's avatar
dyning committed
129
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
grasswolfs's avatar
grasswolfs committed
130
131
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
136
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
LDOUBLEV's avatar
LDOUBLEV committed
137
- [New language requests](#language_requests)
WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
142
143
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

grasswolfs's avatar
grasswolfs committed
144
<a name="PP-OCRv2"></a>
WenmuZhou's avatar
WenmuZhou committed
145

grasswolfs's avatar
grasswolfs committed
146
147
148
149
## PP-OCRv2 Pipeline
<div align="center">
    <img src="./doc/ppocrv2_framework.jpg" width="800">
</div>
LDOUBLEV's avatar
LDOUBLEV committed
150

grasswolfs's avatar
grasswolfs committed
151
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
LDOUBLEV's avatar
LDOUBLEV committed
152

153
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
dyning's avatar
dyning committed
154
155


dyning's avatar
dyning committed
156

tink2123's avatar
tink2123 committed
157

WenmuZhou's avatar
WenmuZhou committed
158
159
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
dyning's avatar
dyning committed
160
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
161
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
162
163
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
164
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
dyning's avatar
dyning committed
165
</div>
tink2123's avatar
tink2123 committed
166

WenmuZhou's avatar
WenmuZhou committed
167
- English OCR model
dyning's avatar
dyning committed
168
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
169
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
dyning's avatar
dyning committed
170
</div>
171

WenmuZhou's avatar
WenmuZhou committed
172
- Multilingual OCR model
dyning's avatar
dyning committed
173
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
174
    <img src="./doc/imgs_results/french_0.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
175
    <img src="./doc/imgs_results/korean.jpg" width="800">
dyning's avatar
dyning committed
176
</div>
tink2123's avatar
tink2123 committed
177

dyning's avatar
dyning committed
178

LDOUBLEV's avatar
LDOUBLEV committed
179
<a name="language_requests"></a>
180
## Guideline for New Language Requests
LDOUBLEV's avatar
LDOUBLEV committed
181
182
183

If you want to request a new language support, a PR with 2 following files are needed:

grasswolfs's avatar
grasswolfs committed
184
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
LDOUBLEV's avatar
LDOUBLEV committed
185
186
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

grasswolfs's avatar
grasswolfs committed
187
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
LDOUBLEV's avatar
LDOUBLEV committed
188
189
190
191
192
193
194
195
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

MissPenguin's avatar
MissPenguin committed
196

WenmuZhou's avatar
WenmuZhou committed
197
198
199
200
201
202
203
204
205
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
littletomatodonkey's avatar
littletomatodonkey committed
206
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitignore and discard set PYTHONPATH manually.
WenmuZhou's avatar
WenmuZhou committed
207
208
209
210
211
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
LDOUBLEV's avatar
LDOUBLEV committed
212
213
214
215
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。