rec_postprocess.py 29.3 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

WenmuZhou's avatar
WenmuZhou committed
15
16
17
import numpy as np
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
24
    def __init__(self, character_dict_path=None, use_space_char=False):
tink2123's avatar
tink2123 committed
25
26
27
        self.beg_str = "sos"
        self.end_str = "eos"

tink2123's avatar
tink2123 committed
28
29
        self.character_str = []
        if character_dict_path is None:
WenmuZhou's avatar
WenmuZhou committed
30
31
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
32
        else:
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
37
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
38
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
39
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
40
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
41

WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
48
49
50
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
51
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
52
53
54
55
56
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

WenmuZhou's avatar
WenmuZhou committed
75
            text = ''.join(char_list)
76
            result_list.append((text, np.mean(conf_list).tolist()))
WenmuZhou's avatar
WenmuZhou committed
77
78
79
80
81
82
83
84
85
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
86
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
87
88
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
89
                                             use_space_char)
WenmuZhou's avatar
WenmuZhou committed
90
91

    def __call__(self, preds, label=None, *args, **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
92
        if isinstance(preds, tuple) or isinstance(preds, list):
93
            preds = preds[-1]
WenmuZhou's avatar
WenmuZhou committed
94
95
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
96
97
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
98
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
99
100
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
101
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
102
103
104
105
106
107
108
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
109
110
111
112
113
114
115
116
117
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
118
                 model_name=["student"],
119
                 key=None,
andyjpaddle's avatar
andyjpaddle committed
120
                 multi_head=False,
littletomatodonkey's avatar
littletomatodonkey committed
121
                 **kwargs):
tink2123's avatar
tink2123 committed
122
123
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
124
125
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
126
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
127

128
        self.key = key
andyjpaddle's avatar
andyjpaddle committed
129
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey committed
130
131

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
135
136
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
andyjpaddle's avatar
andyjpaddle committed
137
138
            if self.multi_head and isinstance(pred, dict):
                pred = pred['ctc']
littletomatodonkey's avatar
littletomatodonkey committed
139
140
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
141
142


Topdu's avatar
Topdu committed
143
144
145
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
146
    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
Topdu's avatar
Topdu committed
147
        super(NRTRLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
148
                                              use_space_char)
Topdu's avatar
Topdu committed
149
150
151

    def __call__(self, preds, label=None, *args, **kwargs):

Topdu's avatar
Topdu committed
152
153
154
155
156
157
158
159
160
161
162
163
164
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
Topdu's avatar
Topdu committed
165
166
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
167
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
168
169
170
171
172
173
174
175
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
176
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
177
178
179
        return text, label

    def add_special_char(self, dict_character):
andyjpaddle's avatar
andyjpaddle committed
180
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
181
        return dict_character
andyjpaddle's avatar
andyjpaddle committed
182

Topdu's avatar
Topdu committed
183
184
185
186
187
188
189
190
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
andyjpaddle's avatar
andyjpaddle committed
191
                if text_index[batch_idx][idx] == 3:  # end
Topdu's avatar
Topdu committed
192
193
                    break
                try:
andyjpaddle's avatar
andyjpaddle committed
194
195
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
Topdu's avatar
Topdu committed
196
197
198
199
200
201
202
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
203
            result_list.append((text.lower(), np.mean(conf_list).tolist()))
Topdu's avatar
Topdu committed
204
205
206
        return result_list


WenmuZhou's avatar
WenmuZhou committed
207
208
209
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
210
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
211
212
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
213
                                              use_space_char)
WenmuZhou's avatar
WenmuZhou committed
214
215

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
216
217
218
219
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
220
221
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
andyjpaddle's avatar
andyjpaddle committed
241
242
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
LDOUBLEV's avatar
LDOUBLEV committed
243
244
245
246
247
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
248
            result_list.append((text, np.mean(conf_list).tolist()))
LDOUBLEV's avatar
LDOUBLEV committed
249
250
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
251
252
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
253
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
254
255
256
257
258
259
260
261
262
263
264
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
265
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
266
267
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
268
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
269
270
        return text, label

WenmuZhou's avatar
WenmuZhou committed
271
272
273
274
275
276
277
278
279
280
281
282
283
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
284
        return idx
tink2123's avatar
tink2123 committed
285
286


tink2123's avatar
tink2123 committed
287
288
289
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
290
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
291
292
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
293
                                              use_space_char)
tink2123's avatar
tink2123 committed
294
295

    def add_special_char(self, dict_character):
tink2123's avatar
tink2123 committed
296
        self.padding_str = "padding"
tink2123's avatar
tink2123 committed
297
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
298
299
300
301
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding_str, self.unknown
        ]
tink2123's avatar
tink2123 committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
340
            result_list.append((text, np.mean(conf_list).tolist()))
tink2123's avatar
tink2123 committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


tink2123's avatar
tink2123 committed
368
369
370
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
371
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
372
373
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
374
                                             use_space_char)
375
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
376
377
378
379
380
381
382
383
384
385
386

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

387
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
388

389
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
390

tink2123's avatar
tink2123 committed
391
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
392
393

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
394
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
395
            return text
tink2123's avatar
tink2123 committed
396
        label = self.decode(label)
tink2123's avatar
tink2123 committed
397
398
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
399
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
424
            result_list.append((text, np.mean(conf_list).tolist()))
tink2123's avatar
tink2123 committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
445
446
447
448
449


class TableLabelDecode(object):
    """  """

andyjpaddle's avatar
andyjpaddle committed
450
451
452
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
andyjpaddle's avatar
andyjpaddle committed
471
472
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
WenmuZhou's avatar
WenmuZhou committed
473
474
475
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
476
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
477
478
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
479
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
480
481
482
483
484
485
486
487
488
489
490
491
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
andyjpaddle's avatar
andyjpaddle committed
492
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
493
            structure_probs = structure_probs.numpy()
andyjpaddle's avatar
andyjpaddle committed
494
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
495
496
497
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
498
499
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
andyjpaddle's avatar
andyjpaddle committed
514
515
516
517
518
519
520
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
585
586
587
588
589


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
590
    def __init__(self, character_dict_path=None, use_space_char=False,
andyjpaddle's avatar
andyjpaddle committed
591
592
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
593
                                             use_space_char)
andyjpaddle's avatar
andyjpaddle committed
594

andyjpaddle's avatar
andyjpaddle committed
595
        self.rm_symbol = kwargs.get('rm_symbol', False)
andyjpaddle's avatar
andyjpaddle committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
andyjpaddle's avatar
andyjpaddle committed
614

andyjpaddle's avatar
andyjpaddle committed
615
616
617
618
619
620
621
622
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
andyjpaddle's avatar
andyjpaddle committed
623
                    if text_prob is None and idx == 0:
andyjpaddle's avatar
andyjpaddle committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
639
640
641
642
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
643
            result_list.append((text, np.mean(conf_list).tolist()))
andyjpaddle's avatar
andyjpaddle committed
644
645
646
647
648
649
650
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
651

andyjpaddle's avatar
andyjpaddle committed
652
653
654
655
656
657
658
659
660
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]
661
662


andyjpaddle's avatar
andyjpaddle committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
class DistillationSARLabelDecode(SARLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
                 model_name=["student"],
                 key=None,
                 multi_head=False,
                 **kwargs):
        super(DistillationSARLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
        if not isinstance(model_name, list):
            model_name = [model_name]
        self.model_name = model_name

        self.key = key
        self.multi_head = multi_head

    def __call__(self, preds, label=None, *args, **kwargs):
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            if self.multi_head and isinstance(pred, dict):
                pred = pred['sar']
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output


697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
class PRENLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(PRENLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def decode(self, text_index, text_prob=None):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == self.end_idx:
                    break
                if text_index[batch_idx][idx] in \
                    [self.padding_idx, self.unknown_idx]:
                    continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            if len(text) > 0:
740
                result_list.append((text, np.mean(conf_list).tolist()))
741
742
743
744
745
746
747
748
749
750
751
752
753
754
            else:
                # here confidence of empty recog result is 1
                result_list.append(('', 1))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob)
        if label is None:
            return text
        label = self.decode(label)
        return text, label
Topdu's avatar
Topdu committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791


class SVTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(SVTRLabelDecode, self).__init__(character_dict_path,
                                             use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, tuple):
            preds = preds[-1]
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=-1)
        preds_prob = preds.max(axis=-1)

        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
        return_text = []
        for i in range(0, len(text), 3):
            text0 = text[i]
            text1 = text[i + 1]
            text2 = text[i + 2]

            text_pred = [text0[0], text1[0], text2[0]]
            text_prob = [text0[1], text1[1], text2[1]]
            id_max = text_prob.index(max(text_prob))
            return_text.append((text_pred[id_max], text_prob[id_max]))
        if label is None:
            return return_text
        label = self.decode(label)
        return return_text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character