program.py 19 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
36
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
37

dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81
82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
83
84


85
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
93
        if "." not in key:
94
95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
96
            else:
97
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
98
99
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
100
            assert (
101
                sub_keys[0] in config
tink2123's avatar
tink2123 committed
102
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
103
104
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
105
106
107
108
109
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
110
    return config
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
125
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
126
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
127
128
129
130
131
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
132
def train(config,
dyning's avatar
dyning committed
133
134
135
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
136
137
138
139
140
141
142
143
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
144
145
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
146
147
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
151
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
152
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
153

dyning's avatar
dyning committed
154
    global_step = 0
155
156
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
161
162
163
164
165
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
166
167
168
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
169
170
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
171
172
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
173
174
175
176
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
177
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
178
179
    model.train()

tink2123's avatar
tink2123 committed
180
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
181
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
182
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
183
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
184
        model_type = config['Architecture']['model_type']
185
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
186
        model_type = None
tink2123's avatar
tink2123 committed
187
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
188

189
190
191
192
193
194
195
196
197
198
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
199

tink2123's avatar
tink2123 committed
200
    for epoch in range(start_epoch, epoch_num + 1):
201
202
203
204
205
206
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)

WenmuZhou's avatar
WenmuZhou committed
207
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
208
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
209
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
210
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
211
212
213
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
214
            if use_srn:
tink2123's avatar
tink2123 committed
215
                model_average = True
stephon's avatar
stephon committed
216

WenmuZhou's avatar
WenmuZhou committed
217
            train_start = time.time()
stephon's avatar
stephon committed
218
219
220
221
222
223
224
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
225
            else:
stephon's avatar
stephon committed
226
227
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
228
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
229
                    preds = model(batch)
stephon's avatar
stephon committed
230
231
                else:
                    preds = model(images)
232

WenmuZhou's avatar
WenmuZhou committed
233
234
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
235
236
237
238
239
240
241
242

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
243
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
244

WenmuZhou's avatar
WenmuZhou committed
245
            train_run_cost += time.time() - train_start
246
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
247
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
248

dyning's avatar
dyning committed
249
250
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
251
252
253
254
255
256

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
257
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
258
                batch = [item.numpy() for item in batch]
LDOUBLEV's avatar
LDOUBLEV committed
259
                if model_type in ['table', 'kie']:
MissPenguin's avatar
MissPenguin committed
260
261
262
263
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
264
265
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
266
267
268
269
270
271

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

272
273
274
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
275
                logs = train_stats.log()
276
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: {:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
277
                    epoch, epoch_num, global_step, logs, train_reader_cost /
WenmuZhou's avatar
WenmuZhou committed
278
                    print_batch_step, (train_reader_cost + train_run_cost) /
279
                    print_batch_step, total_samples / print_batch_step,
WenmuZhou's avatar
WenmuZhou committed
280
                    total_samples / (train_reader_cost + train_run_cost))
WenmuZhou's avatar
WenmuZhou committed
281
                logger.info(strs)
282

WenmuZhou's avatar
WenmuZhou committed
283
                train_reader_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
284
285
                train_run_cost = 0.0
                total_samples = 0
WenmuZhou's avatar
WenmuZhou committed
286
287
288
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
289
290
291
292
293
294
295
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
296
297
298
299
300
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
301
                    model_type,
tink2123's avatar
tink2123 committed
302
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
303
304
305
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
306
307
308

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
309
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
310
311
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
312
313
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
314
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
315
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
316
317
318
319
320
321
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
322
                        config,
WenmuZhou's avatar
WenmuZhou committed
323
324
325
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
326
327
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
328
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
329
330
331
332
333
334
335
336
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
337

WenmuZhou's avatar
WenmuZhou committed
338
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
339
340
341
342
343
344
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
345
                config,
WenmuZhou's avatar
WenmuZhou committed
346
347
348
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
349
350
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
351
352
353
354
355
356
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
357
                config,
WenmuZhou's avatar
WenmuZhou committed
358
359
360
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
361
362
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
363
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
364
365
366
367
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
368
369
370
    return


MissPenguin's avatar
refine  
MissPenguin committed
371
372
373
374
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
375
         model_type=None,
tink2123's avatar
tink2123 committed
376
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
377
378
379
380
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
381
382
383
384
385
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
386
387
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
388
        for idx, batch in enumerate(valid_dataloader):
389
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
390
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
391
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
392
            start = time.time()
tink2123's avatar
tink2123 committed
393
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
394
                preds = model(images, data=batch[1:])
395
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
396
                preds = model(batch)
xiaoting's avatar
xiaoting committed
397
            else:
LDOUBLEV's avatar
LDOUBLEV committed
398
                preds = model(images)
399
400
401
402
403
404
405

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
406
407
408
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
409
            if model_type in ['table', 'kie']:
410
411
412
413
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
414
            else:
415
416
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
417

WenmuZhou's avatar
fix bug  
WenmuZhou committed
418
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
419
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
420
421
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
422

WenmuZhou's avatar
fix bug  
WenmuZhou committed
423
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
424
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
425
426
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
427

tink2123's avatar
tink2123 committed
428

Bin Lu's avatar
Bin Lu committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


478
def preprocess(is_train=False):
licx's avatar
licx committed
479
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
480
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
481
    config = load_config(FLAGS.config)
482
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
483
    profile_dic = {"profiler_options": FLAGS.profiler_options}
484
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
485

486
487
488
489
490
491
492
493
494
495
496
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
497
498
499
500
501

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
502
503
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
504
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
505
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
506
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
WenmuZhou's avatar
WenmuZhou committed
507
    ]
licx's avatar
licx committed
508

WenmuZhou's avatar
WenmuZhou committed
509
510
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
511

dyning's avatar
dyning committed
512
    config['Global']['distributed'] = dist.get_world_size() != 1
513

littletomatodonkey's avatar
littletomatodonkey committed
514
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
dyning's avatar
dyning committed
515
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
516
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
517
518
519
520
521
522
523
524
525
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer