utility.py 19.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

27
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
32
33


WenmuZhou's avatar
WenmuZhou committed
34
35
def init_args():
    parser = argparse.ArgumentParser()
36
    # params for prediction engine
WenmuZhou's avatar
WenmuZhou committed
37
38
39
40
41
42
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--use_fp16", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=500)

WenmuZhou's avatar
WenmuZhou committed
43
    # params for text detector
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
48
49
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')

WenmuZhou's avatar
WenmuZhou committed
50
    # DB parmas
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
57
    # EAST parmas
WenmuZhou's avatar
WenmuZhou committed
58
59
60
61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
62
    # SAST parmas
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
    parser.add_argument("--det_sast_polygon", type=bool, default=False)

WenmuZhou's avatar
WenmuZhou committed
67
    # params for text recognizer
WenmuZhou's avatar
WenmuZhou committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

Jethong's avatar
Jethong committed
83
    # params for e2e
WenmuZhou's avatar
WenmuZhou committed
84
85
86
87
88
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

Jethong's avatar
Jethong committed
89
    # PGNet parmas
WenmuZhou's avatar
WenmuZhou committed
90
91
92
93
94
95
96
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')

WenmuZhou's avatar
WenmuZhou committed
97
    # params for text classifier
WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
103
104
105
106
107
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
108
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
109
110
111
112

    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
WenmuZhou's avatar
WenmuZhou committed
113
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
114
    return parser
WenmuZhou's avatar
WenmuZhou committed
115

116

117
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
118
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
119
120
121
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
127
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
128
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
129
130
    elif mode == 'structure':
        model_dir = args.structure_model_dir
Jethong's avatar
Jethong committed
131
132
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
133
134
135
136

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
137
138
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
139
140
141
142
143
144
145
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
146
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
147
148
149

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
150
151
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
152
153
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
WenmuZhou's avatar
WenmuZhou committed
154
                min_subgraph_size=3)  # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
225
226
227
228
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
229
230
231
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
232
233
    else:
        config.disable_gpu()
234
235
236
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
237
238
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
239
240
241
242
243
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
244
245
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
246
247
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
248
249
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
250
251
    config.switch_ir_optim(True)
    if mode == 'structure':
WenmuZhou's avatar
WenmuZhou committed
252
        config.switch_ir_optim(False)
WenmuZhou's avatar
WenmuZhou committed
253
254
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
255
256
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
257
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
258
259
260
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
261
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
262
263
264
265
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


Jethong's avatar
Jethong committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
282
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
283
284
285
286
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
287
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
288
289


LDOUBLEV's avatar
LDOUBLEV committed
290
291
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
292
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
293
294
295
296
297
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
298
299
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
300
301


WenmuZhou's avatar
WenmuZhou committed
302
303
304
305
306
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
307
             font_path="./doc/fonts/simfang.ttf"):
308
309
310
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
311
        image(Image|array): RGB image
312
313
314
315
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
316
        font_path: the path of font which is used to draw text
317
318
319
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
320
321
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
322
323
324
325
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
326
            continue
WenmuZhou's avatar
WenmuZhou committed
327
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
328
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
329
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
330
        img = np.array(resize_img(image, input_size=600))
331
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
332
333
334
335
336
337
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
338
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
339
340
        return img
    return image
341
342


WenmuZhou's avatar
WenmuZhou committed
343
344
345
346
347
348
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
349
350
351
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
352
353

    import random
LDOUBLEV's avatar
LDOUBLEV committed
354

355
356
357
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
358
359
360
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
361
362
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
363
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
364
365
366
367
368
369
370
371
372
373
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
374
375
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
376
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
377
378
379
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
380
381
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
382
383
384
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
385
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
386
387
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
388
389
390
391
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
392
393
394
    return np.array(img_show)


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
419
420
421
422
423
424
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
425
426
427
428
429
430
431
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
432
        font_path: the path of font which is used to draw text
433
434
435
436
437
438
439
440
441
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
442
443
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
444
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
445

446
447
448
449
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
450
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
451
452
453

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
454
    count, index = 1, 0
455
456
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
457
        if scores[idx] < threshold or math.isnan(scores[idx]):
458
459
460
461
462
463
464
465
466
467
468
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
469
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
470
471
472
473
474
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
475
            count += 1
476
477
478
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
479
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
480
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
481
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
482
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
483
484
485
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
486
        count += 1
487
488
489
490
491
492
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
493
494


dyning's avatar
dyning committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
514
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
515
    pass