pdf_extract_kit.py 21.1 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
from magic_pdf.libs.Constants import *
5
from magic_pdf.libs.clean_memory import clean_memory
6
from magic_pdf.model.model_list import AtomicModel
7
8

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
9
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
10
11
12
13
14
15
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
16
    import torchtext
17

18
19
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
20
21
22
23
24
25
26
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
27
    from doclayout_yolo import YOLOv10
28
    from rapid_table import RapidTable
赵小蒙's avatar
update:  
赵小蒙 committed
29

30
31
except ImportError as e:
    logger.exception(e)
32
33
    logger.error(
        'Required dependency not installed, please install by \n'
34
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
35
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
36

37
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
38
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
39
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
40
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
41
42
43
44
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
45
    if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
46
        table_model = StructTableModel(model_path, max_time=max_time)
47
    elif table_model_type == MODEL_NAME.TABLE_MASTER:
48
49
50
51
52
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
53
54
    elif table_model_type == MODEL_NAME.RAPID_TABLE:
        table_model = RapidTable()
55
56
57
    else:
        logger.error("table model type not allow")
        exit(1)
58

59
    return table_model
60

赵小蒙's avatar
update:  
赵小蒙 committed
61

62
63
64
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
65
66


67
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
68
69
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
70
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
71
72
73
74
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
75
    model.to(_device_)
76
    model.eval()
77
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
78
79
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
80
81


82
83
84
85
86
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


87
88
89
90
91
def doclayout_yolo_model_init(weight):
    model = YOLOv10(weight)
    return model


92
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=1.8):
93
    if lang is not None:
94
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
95
    else:
96
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
97
98
99
    return model


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
116
            return image
117
118


119
120
121
122
123
124
125
126
127
128
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
129
130
131
132
133
134
        lang = kwargs.get("lang", None)
        layout_model_name = kwargs.get("layout_model_name", None)
        key = (atom_model_name, layout_model_name, lang)
        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]
135
136
137
138
139


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
140
141
142
143
144
145
146
147
148
149
        if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
            atom_model = layout_model_init(
                kwargs.get("layout_weights"),
                kwargs.get("layout_config_file"),
                kwargs.get("device")
            )
        elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
            atom_model = doclayout_yolo_model_init(
                kwargs.get("doclayout_yolo_weights"),
            )
150
151
152
153
154
155
156
157
158
159
160
161
162
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
163
164
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
165
166
167
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
168
            kwargs.get("table_model_name"),
169
170
171
172
173
174
175
176
177
178
179
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


197
class CustomPEKModel:
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
213
        with open(config_path, "r", encoding='utf-8') as f:
214
215
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
216
217
218
219
220
221
222
223
224
225
226

        # layout config
        self.layout_config = kwargs.get("layout_config")
        self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)

        # formula config
        self.formula_config = kwargs.get("formula_config")
        self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
        self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
        self.apply_formula = self.formula_config.get("enable", True)

227
        # table config
228
229
        self.table_config = kwargs.get("table_config")
        self.apply_table = self.table_config.get("enable", False)
230
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
231
        self.table_model_name = self.table_config.get("model", MODEL_NAME.RAPID_TABLE)
232
233

        # ocr config
234
        self.apply_ocr = ocr
235
        self.lang = kwargs.get("lang", None)
236

237
        logger.info(
238
239
240
            "DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
            "apply_table: {}, table_model: {}, lang: {}".format(
                self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
241
            )
242
243
        )
        # 初始化解析方案
244
        self.device = kwargs.get("device", "cpu")
245
        logger.info("using device: {}".format(self.device))
246
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
247
        logger.info("using models_dir: {}".format(models_dir))
248

249
250
        atom_model_manager = AtomModelSingleton()

251
252
        # 初始化公式识别
        if self.apply_formula:
253

254
            # 初始化公式检测模型
255
256
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
257
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
258
            )
259

260
            # 初始化公式解析模型
261
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
262
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
263
264
265
266
267
268
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
269
270

        # 初始化layout模型
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.LAYOUTLMv3,
                layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
                layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
                device=self.device
            )
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.DocLayout_YOLO,
                doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
            )
285
        # 初始化ocr
286
287
288
289
290
291
292
        # if self.apply_ocr:
        self.ocr_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.OCR,
            ocr_show_log=show_log,
            det_db_box_thresh=0.3,
            lang=self.lang
        )
293
        # init table model
294
        if self.apply_table:
295
            table_model_dir = self.configs["weights"][self.table_model_name]
296
297
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
298
                table_model_name=self.table_model_name,
299
300
301
302
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
303

304
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
305

306
307
    def __call__(self, image):

308
309
        page_start = time.time()

310
311
312
        latex_filling_list = []
        mf_image_list = []

313
314
        # layout检测
        layout_start = time.time()
315
316
317
318
319
320
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            layout_res = self.layout_model(image, ignore_catids=[])
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
            layout_res = []
321
            doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
322
323
324
325
326
327
328
329
            for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 3),
                }
                layout_res.append(new_item)
330
        layout_cost = round(time.time() - layout_start, 2)
331
        logger.info(f"layout detection time: {layout_cost}")
332

333
334
        pil_img = Image.fromarray(image)

335
336
        if self.apply_formula:
            # 公式检测
337
            mfd_start = time.time()
338
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
339
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
340
341
342
343
344
345
346
347
348
349
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
350
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
351
352
353
354
355
356
357
358
359
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
360
361
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
362
363
364
365
366
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

383
        if torch.cuda.is_available() and self.device != 'cpu':
384
385
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
386
            if total_memory <= 10:
387
388
389
390
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
391

myhloli's avatar
myhloli committed
392
        # ocr识别
393
        if self.apply_ocr:
394
            ocr_start = time.time()
395
            # Process each area that requires OCR processing
396
            for res in ocr_res_list:
397
398
399
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
400
401
402
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
403
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
404
405
406
407
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
408
                    # Filter formula blocks outside the graph
409
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
410
411
412
413
414
415
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

416
                # OCR recognition
417
418
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
419

420
                # Integration results
421
422
423
424
425
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

426
                        # Convert the coordinates back to the original coordinate system
427
428
429
430
431
432
433
434
435
436
437
438
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

439
            ocr_cost = round(time.time() - ocr_start, 2)
440
            logger.info(f"ocr time: {ocr_cost}")
441

442
443
        # 表格识别 table recognition
        if self.apply_table:
444
445
446
447
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
448
                # logger.info("------------------table recognition processing begins-----------------")
449
450
                latex_code = None
                html_code = None
451
                if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
452
                    with torch.no_grad():
453
454
455
                        table_result = self.table_model.predict(new_image, "html")
                        if len(table_result) > 0:
                            html_code = table_result[0]
456
                elif self.table_model_name == MODEL_NAME.TABLE_MASTER:
457
                    html_code = self.table_model.img2html(new_image)
458
459
460
461
462
463
464
465
                elif self.table_model_name == MODEL_NAME.RAPID_TABLE:
                    new_image_bgr = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                    ocr_result = self.ocr_model.ocr(new_image_bgr)[0]
                    new_ocr_result = []
                    for box_ocr_res in ocr_result:
                        text, score = box_ocr_res[1]
                        new_ocr_result.append([box_ocr_res[0], text, score])
                    html_code, table_cell_bboxes, elapse = self.table_model(np.asarray(new_image), new_ocr_result)
drunkpig's avatar
drunkpig committed
466

467
                run_time = time.time() - single_table_start_time
468
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
469
470
471
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
472
473

                if latex_code:
474
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith('end{table}')
475
476
477
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
478
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
479
                elif html_code:
480
481
482
483
484
                    expected_ending = html_code.strip().endswith('</html>') or html_code.strip().endswith('</table>')
                    if expected_ending:
                        res["html"] = html_code
                    else:
                        logger.warning(f"table recognition processing fails, not found expected HTML table end")
485
                else:
486
487
488
489
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
490

491
        return layout_res
liukaiwen's avatar
liukaiwen committed
492
493