"tests/models/unets/test_models_unet_2d.py" did not exist on "f3128c87881a5442388358ca40d2ed868b04b358"
pdf_extract_kit.py 18.5 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

5
from magic_pdf.libs.Constants import *
6
from magic_pdf.libs.clean_memory import clean_memory
7
from magic_pdf.model.model_list import AtomicModel
8
9

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
10
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
11
12
13
14
15
16
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
17
    import torchtext
18

19
20
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
21
22
23
24
25
26
27
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
28

29
30
except ImportError as e:
    logger.exception(e)
31
32
    logger.error(
        'Required dependency not installed, please install by \n'
33
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
34
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
35

36
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
37
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
38
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
39
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
40
41
42
43
44
45
46
47
48
49
50
51
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
52
    return table_model
53

赵小蒙's avatar
update:  
赵小蒙 committed
54

55
56
57
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
58
59


60
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
61
62
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
63
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
64
65
66
67
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
68
    model.to(_device_)
69
    model.eval()
70
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
71
72
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
73
74


75
76
77
78
79
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


80
81
82
83
84
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None):
    if lang is not None:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang)
    else:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
85
86
87
    return model


88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
104
            return image
105
106


107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
        if atom_model_name not in self._models:
            self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[atom_model_name]


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
        atom_model = layout_model_init(
            kwargs.get("layout_weights"),
            kwargs.get("layout_config_file"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
143
144
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
            kwargs.get("table_model_type"),
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


177
class CustomPEKModel:
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
193
        with open(config_path, "r", encoding='utf-8') as f:
194
195
196
197
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
198
        # table config
199
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
200
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
201
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
202
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
203
        self.apply_ocr = ocr
204
        self.lang = kwargs.get("lang", None)
205
        logger.info(
206
207
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}, lang: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
208
            )
209
210
211
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
212
        self.device = kwargs.get("device", self.configs["config"]["device"])
213
        logger.info("using device: {}".format(self.device))
214
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
215
        logger.info("using models_dir: {}".format(models_dir))
216

217
218
        atom_model_manager = AtomModelSingleton()

219
220
221
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
222
223
224
225
226
            # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
            )
227
            # 初始化公式解析模型
228
229
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
230
231
232
233
234
235
236
237
            # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            # self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
238
239

        # 初始化layout模型
240
241
242
243
244
245
246
247
248
        # self.layout_model = Layoutlmv3_Predictor(
        #     str(os.path.join(models_dir, self.configs['weights']['layout'])),
        #     str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
        #     device=self.device
        # )
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
            layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
249
250
            device=self.device
        )
251
252
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
253

254
255
256
257
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
258
259
                det_db_box_thresh=0.3,
                lang=self.lang
260
            )
261
        # init table model
262
        if self.apply_table:
263
            table_model_dir = self.configs["weights"][self.table_model_type]
264
265
266
267
268
269
270
271
272
            # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
            #                                     max_time=self.table_max_time, _device_=self.device)
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
                table_model_type=self.table_model_type,
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
273

274
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
275

276
277
    def __call__(self, image):

278
279
        page_start = time.time()

280
281
282
        latex_filling_list = []
        mf_image_list = []

283
284
285
286
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
287
        logger.info(f"layout detection time: {layout_cost}")
288

289
290
        pil_img = Image.fromarray(image)

291
292
        if self.apply_formula:
            # 公式检测
293
            mfd_start = time.time()
294
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
295
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
296
297
298
299
300
301
302
303
304
305
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
306
307
                # bbox_img = get_croped_image(pil_img, [xmin, ymin, xmax, ymax])
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
308
309
310
311
312
313
314
315
316
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
317
318
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
319
320
321
322
323
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

340
341
342
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
343
            if total_memory <= 10:
344
345
346
347
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
348

myhloli's avatar
myhloli committed
349
        # ocr识别
350
        if self.apply_ocr:
351
            ocr_start = time.time()
352
            # Process each area that requires OCR processing
353
            for res in ocr_res_list:
354
355
356
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
357
358
359
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
360
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
361
362
363
364
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
365
                    # Filter formula blocks outside the graph
366
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
367
368
369
370
371
372
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

373
                # OCR recognition
374
375
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
376

377
                # Integration results
378
379
380
381
382
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

383
                        # Convert the coordinates back to the original coordinate system
384
385
386
387
388
389
390
391
392
393
394
395
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

396
            ocr_cost = round(time.time() - ocr_start, 2)
397
            logger.info(f"ocr time: {ocr_cost}")
398

399
400
        # 表格识别 table recognition
        if self.apply_table:
401
402
403
404
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
405
                # logger.info("------------------table recognition processing begins-----------------")
406
407
                latex_code = None
                html_code = None
408
409
                if self.table_model_type == STRUCT_EQTABLE:
                    with torch.no_grad():
410
                        latex_code = self.table_model.image2latex(new_image)[0]
411
412
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
413

414
                run_time = time.time() - single_table_start_time
415
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
416
417
418
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
419
420
421
422
423
424
425

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
426
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
427
428
                elif html_code:
                    res["html"] = html_code
429
                else:
430
431
432
433
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
434

435
        return layout_res