pdf_extract_kit.py 12.6 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
from pypandoc import convert_text
5
6

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
myhloli's avatar
myhloli committed
7
8
9
10
11
12
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
13
    import torchtext
14

15
16
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
17
18
19
20
21
22
23
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
24

25
26
except ImportError as e:
    logger.exception(e)
27
28
29
    logger.error(
        'Required dependency not installed, please install by \n'
        '"pip install magic-pdf[full] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
30
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
31

32
33
34
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
35
36
37
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel


38
39
def table_model_init(model_path, max_time=400, _device_='cpu'):
    table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
40
    return table_model
41

赵小蒙's avatar
update:  
赵小蒙 committed
42

43
44
45
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
46
47


48
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
49
50
51
52
53
54
55
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
56
    model = model.to(_device_)
57
58
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
59
60


61
62
63
64
65
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
82
            return image
83
84


85
class CustomPEKModel:
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
101
        with open(config_path, "r", encoding='utf-8') as f:
102
103
104
105
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
106
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
107
108
109
110
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
赵小蒙's avatar
update:  
赵小蒙 committed
111
            )
112
113
114
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
115
        self.device = kwargs.get("device", self.configs["config"]["device"])
116
        logger.info("using device: {}".format(self.device))
117
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
118
        logger.info("using models_dir: {}".format(models_dir))
119

120
121
122
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
123
124
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

125
            # 初始化公式解析模型
126
127
128
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
129
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
130
131
132
133
134
135
136

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
137
138
139
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
140

141
        # init structeqtable
142
143
144
145
        if self.table_config.get("is_table_recog_enable", False):
            max_time = self.table_config.get("max_time", 400)
            self.table_model = table_model_init(str(os.path.join(models_dir, self.configs["weights"]["table"])),
                                                max_time=max_time, _device_=self.device)
146
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
147

148
149
    def __call__(self, image):

150
151
152
        latex_filling_list = []
        mf_image_list = []

153
154
155
156
157
158
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
188

myhloli's avatar
myhloli committed
189
        # ocr识别
190
        if self.apply_ocr:
191
192
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
193
194
195

            # 筛选出需要OCR的区域和公式区域
            ocr_res_list = []
196
197
198
199
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    single_page_mfdetrec_res.append({
200
201
                        "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                                 int(res['poly'][4]), int(res['poly'][5])],
202
                    })
203
204
205
206
207
208
209
210
211
212
213
                elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                    ocr_res_list.append(res)

            # 对每一个需OCR处理的区域进行处理
            for res in ocr_res_list:
                xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                xmax, ymax = int(res['poly'][4]), int(res['poly'][5])

                paste_x = 50
                paste_y = 50
                # 创建一个宽高各多50的白色背景
214
215
                new_width = xmax - xmin + paste_x * 2
                new_height = ymax - ymin + paste_y * 2
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                new_image = Image.new('RGB', (new_width, new_height), 'white')

                # 裁剪图像
                crop_box = (xmin, ymin, xmax, ymax)
                cropped_img = pil_img.crop(crop_box)
                new_image.paste(cropped_img, (paste_x, paste_y))

                # 调整公式区域坐标
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
                    # 将公式区域坐标调整为相对于裁剪区域的坐标
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
232
233
                    # 过滤在图外的公式块
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
234
235
236
237
238
239
240
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

                # OCR识别
241
242
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

                # 整合结果
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

                        # 将坐标转换回原图坐标系
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

263
264
265
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        # 表格识别 table recognition
        if self.apply_table:
            pil_img = Image.fromarray(image)
            for layout in layout_res:
                if layout.get("category_id", -1) == 5:
                    poly = layout["poly"]
                    xmin, ymin = int(poly[0]), int(poly[1])
                    xmax, ymax = int(poly[4]), int(poly[5])

                    paste_x = 50
                    paste_y = 50
                    # 创建一个宽高各多50的白色背景 create a whiteboard with 50 larger width and length
                    new_width = xmax - xmin + paste_x * 2
                    new_height = ymax - ymin + paste_y * 2
                    new_image = Image.new('RGB', (new_width, new_height), 'white')

                    # 裁剪图像 crop image
                    crop_box = (xmin, ymin, xmax, ymax)
                    cropped_img = pil_img.crop(crop_box)
                    new_image.paste(cropped_img, (paste_x, paste_y))
                    start_time = time.time()
287
                    logger.info("------------------table recognition processing begins-----------------")
288
289
290
                    latex_code = self.table_model.image2latex(new_image)[0]
                    end_time = time.time()
                    run_time = end_time - start_time
291
                    logger.info(f"------------table recognition processing ends within {run_time}s-----")
292
                    layout["latex"] = latex_code
293

294
        return layout_res