"sgl-kernel/csrc/gemm/per_token_group_quant_8bit.cu" did not exist on "bb418ced802c6dbb6b0ae0d65218327129148769"
pdf_extract_kit.py 8.45 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
3
4
5
6
7
8
9
import os
try:
    import cv2
    import yaml
    import time
    import argparse
    import numpy as np
    import torch
10

myhloli's avatar
myhloli committed
11
12
13
14
15
16
17
18
    from paddleocr import draw_ocr
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
19

myhloli's avatar
myhloli committed
20
21
22
23
24
25
    from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
    from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
    from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
except ImportError:
    logger.error('Required dependency not installed, please install by \n"pip install magic-pdf[full-cpu] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
26
27


28
29
30
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
31
32


33
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
34
35
36
37
38
39
40
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
41
    model = model.to(_device_)
42
43
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
44
45


46
47
48
49
50
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
67
            return image
68
69


70
class CustomPEKModel:
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
        with open(config_path, "r") as f:
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
赵小蒙's avatar
update:  
赵小蒙 committed
95
            )
96
97
98
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
99
        self.device = kwargs.get("device", self.configs["config"]["device"])
100
        logger.info("using device: {}".format(self.device))
101
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
102

103
104
105
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
106
107
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

108
            # 初始化公式解析模型
109
110
111
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
112
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
113
114
115
116
117
118
119

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
120
121
122
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
123

124
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
125

126
127
    def __call__(self, image):

128
129
130
        latex_filling_list = []
        mf_image_list = []

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

        # 公式检测
        mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
        for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
            xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
            new_item = {
                'category_id': 13 + int(cla.item()),
                'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                'score': round(float(conf.item()), 2),
                'latex': '',
            }
            layout_res.append(new_item)
            latex_filling_list.append(new_item)
            bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
            mf_image_list.append(bbox_img)

        # 公式识别
        mfr_start = time.time()
154
        dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
155
        dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
156
        mfr_res = []
157
158
159
        for mf_img in dataloader:
            mf_img = mf_img.to(self.device)
            output = self.mfr_model.generate({'image': mf_img})
160
161
162
            mfr_res.extend(output['pred_str'])
        for res, latex in zip(latex_filling_list, mfr_res):
            res['latex'] = latex_rm_whitespace(latex)
163
164
        mfr_cost = round(time.time() - mfr_start, 2)
        logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
165

myhloli's avatar
myhloli committed
166
        # ocr识别
167
        if self.apply_ocr:
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    single_page_mfdetrec_res.append({
                        "bbox": [xmin, ymin, xmax, ymax],
                    })
            for res in layout_res:
                if int(res['category_id']) in [0, 1, 2, 4, 6, 7]:  # 需要进行ocr的类别
                    xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                    xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                    crop_box = (xmin, ymin, xmax, ymax)
                    cropped_img = Image.new('RGB', pil_img.size, 'white')
                    cropped_img.paste(pil_img.crop(crop_box), crop_box)
                    cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
                    ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
                    if ocr_res:
                        for box_ocr_res in ocr_res:
                            p1, p2, p3, p4 = box_ocr_res[0]
                            text, score = box_ocr_res[1]
                            layout_res.append({
                                'category_id': 15,
                                'poly': p1 + p2 + p3 + p4,
                                'score': round(score, 2),
                                'text': text,
                            })
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

        return layout_res