pdf_extract_kit.py 8.41 KB
Newer Older
赵小蒙's avatar
update:  
赵小蒙 committed
1
import os
2
3
4
import time

import cv2
赵小蒙's avatar
update:  
赵小蒙 committed
5
6
import numpy as np
import yaml
7
from PIL import Image
赵小蒙's avatar
update:  
赵小蒙 committed
8
from ultralytics import YOLO
9
10
from loguru import logger
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
赵小蒙's avatar
update:  
赵小蒙 committed
11
from unimernet.common.config import Config
12
import unimernet.tasks as tasks
赵小蒙's avatar
update:  
赵小蒙 committed
13
from unimernet.processors import load_processor
14
15
import argparse
from torchvision import transforms
16
from torch.utils.data import Dataset, DataLoader
赵小蒙's avatar
update:  
赵小蒙 committed
17

18
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
19
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
赵小蒙's avatar
update:  
赵小蒙 committed
20
21


22
23
24
def layout_model_init(weight, config_file):
    model = Layoutlmv3_Predictor(weight, config_file)
    return model
赵小蒙's avatar
update:  
赵小蒙 committed
25
26


27
28
29
30
31
32
33
34
35
36
37
def mfr_model_init(weight_dir, cfg_path, device='cpu'):
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
    model = model.to(device)
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
        return image


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class CustomPEKModel:
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
        with open(config_path, "r") as f:
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
赵小蒙's avatar
update:  
赵小蒙 committed
83
            )
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
        self.device = self.configs["config"]["device"]
        logger.info("using device: {}".format(self.device))
        # 初始化layout模型
        self.layout_model = layout_model_init(
            os.path.join(root_dir, self.configs['weights']['layout']),
            os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")
        )
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
            self.mfd_model = YOLO(model=str(os.path.join(root_dir, self.configs["weights"]["mfd"])))
            # 初始化公式解析模型
            mfr_config_path = os.path.join(model_config_dir, 'UniMERNet', 'demo.yaml')
            self.mfr_model, mfr_vis_processors = mfr_model_init(
                os.path.join(root_dir, self.configs["weights"]["mfr"]), mfr_config_path,
                device=self.device)
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
107

108
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def __call__(self, images):
        # layout检测 + 公式检测
        doc_layout_result = []
        latex_filling_list = []
        mf_image_list = []
        for idx, img_dict in enumerate(images):
            image = img_dict["img"]
            img_height, img_width = img_dict["height"], img_dict["width"]
            layout_res = self.layout_model(image, ignore_catids=[])
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res['layout_dets'].append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            layout_res['page_info'] = dict(
                page_no=idx,
                height=img_height,
                width=img_width
            )
            doc_layout_result.append(layout_res)

        # 公式识别,因为识别速度较慢,为了提速,把单个pdf的所有公式裁剪完,一起批量做识别。
        a = time.time()
        dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
        dataloader = DataLoader(dataset, batch_size=128, num_workers=0)
        mfr_res = []
        for imgs in dataloader:
            imgs = imgs.to(self.device)
            output = self.mfr_model.generate({'image': imgs})
            mfr_res.extend(output['pred_str'])
        for res, latex in zip(latex_filling_list, mfr_res):
            res['latex'] = latex_rm_whitespace(latex)
        b = time.time()
        logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {round(b - a, 2)}")

        if self.apply_ocr:
            # ocr识别
            for idx, img_dict in enumerate(images):
                image = img_dict["img"]
                pil_img = Image.fromarray(image)
                single_page_res = doc_layout_result[idx]['layout_dets']
                single_page_mfdetrec_res = []
                for res in single_page_res:
                    if int(res['category_id']) in [13, 14]:
                        xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                        xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                        single_page_mfdetrec_res.append({
                            "bbox": [xmin, ymin, xmax, ymax],
                        })
                for res in single_page_res:
                    if int(res['category_id']) in [0, 1, 2, 4, 6, 7]:  # 需要进行ocr的类别
                        xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                        xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
                        crop_box = [xmin, ymin, xmax, ymax]
                        cropped_img = Image.new('RGB', pil_img.size, 'white')
                        cropped_img.paste(pil_img.crop(crop_box), crop_box)
                        cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
                        ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
                        if ocr_res:
                            for box_ocr_res in ocr_res:
                                p1, p2, p3, p4 = box_ocr_res[0]
                                text, score = box_ocr_res[1]
                                doc_layout_result[idx]['layout_dets'].append({
                                    'category_id': 15,
                                    'poly': p1 + p2 + p3 + p4,
                                    'score': round(score, 2),
                                    'text': text,
                                })
赵小蒙's avatar
update:  
赵小蒙 committed
188

189
        return doc_layout_result