pdf_extract_kit.py 17.5 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

yyy's avatar
yyy committed
5
from magic_pdf.libs.Constants import *
drunkpig's avatar
drunkpig committed
6
from magic_pdf.model.model_list import AtomicModel
7
8

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
myhloli's avatar
myhloli committed
9
10
11
12
13
14
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
15
    import torchtext
16

17
18
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
19
20
21
22
23
24
25
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
26

27
28
except ImportError as e:
    logger.exception(e)
29
30
    logger.error(
        'Required dependency not installed, please install by \n'
31
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
32
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
33

34
35
36
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
37
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
yyy's avatar
yyy committed
38
39
40
41
42
43
44
45
46
47
48
49
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
50
    return table_model
51

赵小蒙's avatar
update:  
赵小蒙 committed
52

53
54
55
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
56
57


58
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
59
60
61
62
63
64
65
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
66
    model = model.to(_device_)
67
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
drunkpig's avatar
drunkpig committed
68
69
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
70
71


72
73
74
75
76
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


drunkpig's avatar
drunkpig committed
77
78
79
80
81
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3):
    model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
    return model


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
98
            return image
99
100


drunkpig's avatar
drunkpig committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
        if atom_model_name not in self._models:
            self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[atom_model_name]


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
        atom_model = layout_model_init(
            kwargs.get("layout_weights"),
            kwargs.get("layout_config_file"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
            kwargs.get("det_db_box_thresh")
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
            kwargs.get("table_model_type"),
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


153
class CustomPEKModel:
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
169
        with open(config_path, "r", encoding='utf-8') as f:
170
171
172
173
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
yyy's avatar
yyy committed
174
        # table config
175
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
176
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
177
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
yyy's avatar
yyy committed
178
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
179
180
        self.apply_ocr = ocr
        logger.info(
181
182
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table
赵小蒙's avatar
update:  
赵小蒙 committed
183
            )
184
185
186
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
187
        self.device = kwargs.get("device", self.configs["config"]["device"])
188
        logger.info("using device: {}".format(self.device))
189
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
190
        logger.info("using models_dir: {}".format(models_dir))
191

drunkpig's avatar
drunkpig committed
192
193
        atom_model_manager = AtomModelSingleton()

194
195
196
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
drunkpig's avatar
drunkpig committed
197
198
199
200
201
            # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
            )
202
            # 初始化公式解析模型
203
204
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
drunkpig's avatar
drunkpig committed
205
206
207
208
209
210
211
212
            # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            # self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
213
214

        # 初始化layout模型
drunkpig's avatar
drunkpig committed
215
216
217
218
219
220
221
222
223
        # self.layout_model = Layoutlmv3_Predictor(
        #     str(os.path.join(models_dir, self.configs['weights']['layout'])),
        #     str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
        #     device=self.device
        # )
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
            layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
224
225
            device=self.device
        )
226
227
        # 初始化ocr
        if self.apply_ocr:
赵小蒙's avatar
update:  
赵小蒙 committed
228

drunkpig's avatar
drunkpig committed
229
230
231
232
233
234
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
                det_db_box_thresh=0.3
            )
yyy's avatar
yyy committed
235
        # init table model
236
        if self.apply_table:
yyy's avatar
yyy committed
237
            table_model_dir = self.configs["weights"][self.table_model_type]
drunkpig's avatar
drunkpig committed
238
239
240
241
242
243
244
245
246
247
            # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
            #                                     max_time=self.table_max_time, _device_=self.device)
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
                table_model_type=self.table_model_type,
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )

248
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
249

250
251
    def __call__(self, image):

252
253
254
        latex_filling_list = []
        mf_image_list = []

255
256
257
258
259
260
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

        #  Unified crop img logic
        def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
            crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
            crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
            # Create a white background with an additional width and height of 50
            crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
            crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
            return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

            # Crop image
            crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
            cropped_img = input_pil_img.crop(crop_box)
            return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
            return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
            return return_image, return_list

        pil_img = Image.fromarray(image)

myhloli's avatar
myhloli committed
324
        # ocr识别
325
        if self.apply_ocr:
326
            ocr_start = time.time()
327
            # Process each area that requires OCR processing
328
            for res in ocr_res_list:
329
330
331
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
332
333
334
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
335
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
336
337
338
339
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
340
                    # Filter formula blocks outside the graph
341
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
342
343
344
345
346
347
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

348
                # OCR recognition
349
350
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
351

352
                # Integration results
353
354
355
356
357
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

358
                        # Convert the coordinates back to the original coordinate system
359
360
361
362
363
364
365
366
367
368
369
370
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

371
372
373
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

374
375
        # 表格识别 table recognition
        if self.apply_table:
376
377
378
379
380
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
                logger.info("------------------table recognition processing begins-----------------")
yyy's avatar
yyy committed
381
382
                latex_code = None
                html_code = None
drunkpig's avatar
drunkpig committed
383
384
                if self.table_model_type == STRUCT_EQTABLE:
                    with torch.no_grad():
yyy's avatar
yyy committed
385
                        latex_code = self.table_model.image2latex(new_image)[0]
drunkpig's avatar
drunkpig committed
386
387
388
                else:
                    html_code = self.table_model.img2html(new_image)

389
390
391
392
393
                run_time = time.time() - single_table_start_time
                logger.info(f"------------table recognition processing ends within {run_time}s-----")
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
yyy's avatar
yyy committed
394
395
396
397
398
399
400
401
402
403

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
                        logger.warning(f"------------table recognition processing fails----------")
                elif html_code:
                    res["html"] = html_code
404
405
406
407
408
                else:
                    logger.warning(f"------------table recognition processing fails----------")
            table_cost = round(time.time() - table_start, 2)
            logger.info(f"table cost: {table_cost}")

409
        return layout_res