pdf_extract_kit.py 14.2 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

yyy's avatar
yyy committed
5
from magic_pdf.libs.Constants import *
6
7

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
myhloli's avatar
myhloli committed
8
9
10
11
12
13
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
14
    import torchtext
15

16
17
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
18
19
20
21
22
23
24
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
25

26
27
except ImportError as e:
    logger.exception(e)
28
29
    logger.error(
        'Required dependency not installed, please install by \n'
30
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
31
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
32

33
34
35
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
36
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
yyy's avatar
yyy committed
37
38
39
40
41
42
43
44
45
46
47
48
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
49
    return table_model
50

赵小蒙's avatar
update:  
赵小蒙 committed
51

52
53
54
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
55
56


57
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
58
59
60
61
62
63
64
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
65
    model = model.to(_device_)
66
67
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
68
69


70
71
72
73
74
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
91
            return image
92
93


94
class CustomPEKModel:
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
110
        with open(config_path, "r", encoding='utf-8') as f:
111
112
113
114
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
yyy's avatar
yyy committed
115
        # table config
116
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
117
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
118
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
yyy's avatar
yyy committed
119
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
120
121
        self.apply_ocr = ocr
        logger.info(
122
123
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table
赵小蒙's avatar
update:  
赵小蒙 committed
124
            )
125
126
127
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
128
        self.device = kwargs.get("device", self.configs["config"]["device"])
129
        logger.info("using device: {}".format(self.device))
130
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
131
        logger.info("using models_dir: {}".format(models_dir))
132

133
134
135
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
136
137
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

138
            # 初始化公式解析模型
139
140
141
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
142
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
143
144
145
146
147
148
149

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
150
151
152
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
153

yyy's avatar
yyy committed
154
        # init table model
155
        if self.apply_table:
yyy's avatar
yyy committed
156
157
158
            table_model_dir = self.configs["weights"][self.table_model_type]
            self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
                                                max_time=self.table_max_time, _device_=self.device)
159
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
160

161
162
    def __call__(self, image):

163
164
165
        latex_filling_list = []
        mf_image_list = []

166
167
168
169
170
171
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

        #  Unified crop img logic
        def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
            crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
            crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
            # Create a white background with an additional width and height of 50
            crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
            crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
            return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

            # Crop image
            crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
            cropped_img = input_pil_img.crop(crop_box)
            return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
            return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
            return return_image, return_list

        pil_img = Image.fromarray(image)

myhloli's avatar
myhloli committed
235
        # ocr识别
236
        if self.apply_ocr:
237
            ocr_start = time.time()
238
            # Process each area that requires OCR processing
239
            for res in ocr_res_list:
240
241
242
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
243
244
245
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
246
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
247
248
249
250
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
251
                    # Filter formula blocks outside the graph
252
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
253
254
255
256
257
258
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

259
                # OCR recognition
260
261
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
262

263
                # Integration results
264
265
266
267
268
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

269
                        # Convert the coordinates back to the original coordinate system
270
271
272
273
274
275
276
277
278
279
280
281
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

282
283
284
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

285
286
        # 表格识别 table recognition
        if self.apply_table:
287
288
289
290
291
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
                logger.info("------------------table recognition processing begins-----------------")
yyy's avatar
yyy committed
292
293
                latex_code = None
                html_code = None
294
                with torch.no_grad():
yyy's avatar
yyy committed
295
296
297
298
                    if self.table_model_type == STRUCT_EQTABLE:
                        latex_code = self.table_model.image2latex(new_image)[0]
                    else:
                        html_code = self.table_model.img2html(new_image)
299
300
301
302
303
                run_time = time.time() - single_table_start_time
                logger.info(f"------------table recognition processing ends within {run_time}s-----")
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
yyy's avatar
yyy committed
304
305
306
307
308
309
310
311
312
313

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
                        logger.warning(f"------------table recognition processing fails----------")
                elif html_code:
                    res["html"] = html_code
314
315
316
317
318
                else:
                    logger.warning(f"------------table recognition processing fails----------")
            table_cost = round(time.time() - table_start, 2)
            logger.info(f"table cost: {table_cost}")

319
        return layout_res