pdf_extract_kit.py 20.9 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
5
from pathlib import Path
import shutil
6
from magic_pdf.libs.Constants import *
7
from magic_pdf.libs.clean_memory import clean_memory
8
from magic_pdf.model.model_list import AtomicModel
liukaiwen's avatar
liukaiwen committed
9
from .mfr_cudagraph import GraphRunner
10
11

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
12
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
13
14
15
16
17
18
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
19
    import torchtext
20

21
22
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
23
24
25
26
27
28
29
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
30
    from doclayout_yolo import YOLOv10
赵小蒙's avatar
update:  
赵小蒙 committed
31

32
33
except ImportError as e:
    logger.exception(e)
34
35
    logger.error(
        'Required dependency not installed, please install by \n'
36
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
37
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
38

39
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
40
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
41
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
42
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
43
44
45
46
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
47
    if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
48
49
50
51
52
53
54
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
55
    return table_model
56

赵小蒙's avatar
update:  
赵小蒙 committed
57

58
59
60
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
61
62


63
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
64
65
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
66
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
67
68
69
70
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
71
    model.to(_device_)
72
    model.eval()
liukaiwen's avatar
liukaiwen committed
73
74
75
76
77
    model = model.to(_device_)
    if 'cuda' in _device_:
        decoder_runner = GraphRunner(model.model.model.decoder.model.decoder, max_batchs=128, max_kvlens=256,
                                     device=_device_)
        model.model.model.decoder.model.decoder = decoder_runner
78
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
79
80
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
81
82


83
84
85
86
87
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


88
89
90
91
92
def doclayout_yolo_model_init(weight):
    model = YOLOv10(weight)
    return model


93
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=1.8):
94
    if lang is not None:
95
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
96
    else:
97
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
98
99
100
    return model


101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
117
            return image
118
119


120
121
122
123
124
125
126
127
128
129
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
130
131
132
133
134
135
        lang = kwargs.get("lang", None)
        layout_model_name = kwargs.get("layout_model_name", None)
        key = (atom_model_name, layout_model_name, lang)
        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]
136
137
138
139
140


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
141
142
143
144
145
146
147
148
149
150
        if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
            atom_model = layout_model_init(
                kwargs.get("layout_weights"),
                kwargs.get("layout_config_file"),
                kwargs.get("device")
            )
        elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
            atom_model = doclayout_yolo_model_init(
                kwargs.get("doclayout_yolo_weights"),
            )
151
152
153
154
155
156
157
158
159
160
161
162
163
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
164
165
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
166
167
168
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
169
            kwargs.get("table_model_name"),
170
171
172
173
174
175
176
177
178
179
180
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


198
class CustomPEKModel:
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
214
        with open(config_path, "r", encoding='utf-8') as f:
215
216
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
217
218
219
220
221
222
223
224
225
226
227

        # layout config
        self.layout_config = kwargs.get("layout_config")
        self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)

        # formula config
        self.formula_config = kwargs.get("formula_config")
        self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
        self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
        self.apply_formula = self.formula_config.get("enable", True)

228
        # table config
229
230
        self.table_config = kwargs.get("table_config")
        self.apply_table = self.table_config.get("enable", False)
231
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
232
233
234
        self.table_model_name = self.table_config.get("model", MODEL_NAME.TABLE_MASTER)

        # ocr config
235
        self.apply_ocr = ocr
236
        self.lang = kwargs.get("lang", None)
237

238
        logger.info(
239
240
241
            "DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
            "apply_table: {}, table_model: {}, lang: {}".format(
                self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
242
            )
243
244
        )
        # 初始化解析方案
245
        self.device = kwargs.get("device", "cpu")
246
        logger.info("using device: {}".format(self.device))
247
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
248
        logger.info("using models_dir: {}".format(models_dir))
249

250
251
        atom_model_manager = AtomModelSingleton()

252
253
        # 初始化公式识别
        if self.apply_formula:
254

255
            # 初始化公式检测模型
256
257
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
258
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
259
            )
260

261
            # 初始化公式解析模型
262
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
263
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
264
265
266
267
268
269
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
270
271

        # 初始化layout模型
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.LAYOUTLMv3,
                layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
                layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
                device=self.device
            )
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.DocLayout_YOLO,
                doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
            )
286
287
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
288

289
290
291
292
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
293
294
                det_db_box_thresh=0.3,
                lang=self.lang
295
            )
296
        # init table model
297
        if self.apply_table:
298
            table_model_dir = self.configs["weights"][self.table_model_name]
299
300
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
301
                table_model_name=self.table_model_name,
302
303
304
305
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
306

307
308
309
310
311
312
313
314
315
316
317
            home_directory = Path.home()
            det_source = os.path.join(models_dir, table_model_dir, DETECT_MODEL_DIR)
            rec_source = os.path.join(models_dir, table_model_dir, REC_MODEL_DIR)
            det_dest_dir = os.path.join(home_directory, PP_DET_DIRECTORY)
            rec_dest_dir = os.path.join(home_directory, PP_REC_DIRECTORY)

            if not os.path.exists(det_dest_dir):
                shutil.copytree(det_source, det_dest_dir)
            if not os.path.exists(rec_dest_dir):
                shutil.copytree(rec_source, rec_dest_dir)

318
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
319

320
321
    def __call__(self, image):

322
323
        page_start = time.time()

324
325
326
        latex_filling_list = []
        mf_image_list = []

327
328
        # layout检测
        layout_start = time.time()
329
330
331
332
333
334
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            layout_res = self.layout_model(image, ignore_catids=[])
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
            layout_res = []
335
            doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
336
337
338
339
340
341
342
343
            for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 3),
                }
                layout_res.append(new_item)
344
        layout_cost = round(time.time() - layout_start, 2)
345
        logger.info(f"layout detection time: {layout_cost}")
346

347
348
        pil_img = Image.fromarray(image)

349
350
        if self.apply_formula:
            # 公式检测
351
            mfd_start = time.time()
352
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
353
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
354
355
356
357
358
359
360
361
362
363
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
364
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
365
366
367
368
369
370
371
372
373
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
374
375
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
376
377
378
379
380
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

397
398
399
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
400
            if total_memory <= 10:
401
402
403
404
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
405

myhloli's avatar
myhloli committed
406
        # ocr识别
407
        if self.apply_ocr:
408
            ocr_start = time.time()
409
            # Process each area that requires OCR processing
410
            for res in ocr_res_list:
411
412
413
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
414
415
416
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
417
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
418
419
420
421
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
422
                    # Filter formula blocks outside the graph
423
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
424
425
426
427
428
429
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

430
                # OCR recognition
431
432
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
433

434
                # Integration results
435
436
437
438
439
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

440
                        # Convert the coordinates back to the original coordinate system
441
442
443
444
445
446
447
448
449
450
451
452
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

453
            ocr_cost = round(time.time() - ocr_start, 2)
454
            logger.info(f"ocr time: {ocr_cost}")
455

456
457
        # 表格识别 table recognition
        if self.apply_table:
458
459
460
461
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
462
                # logger.info("------------------table recognition processing begins-----------------")
463
464
                latex_code = None
                html_code = None
465
                if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
466
                    with torch.no_grad():
467
                        latex_code = self.table_model.image2latex(new_image)[0]
468
469
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
470

471
                run_time = time.time() - single_table_start_time
472
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
473
474
475
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
476
477
478
479
480
481
482

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
483
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
484
485
                elif html_code:
                    res["html"] = html_code
486
                else:
487
488
489
490
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
491

492
        return layout_res
liukaiwen's avatar
liukaiwen committed
493
494