pdf_extract_kit.py 20.3 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

5
from magic_pdf.libs.Constants import *
6
from magic_pdf.libs.clean_memory import clean_memory
7
from magic_pdf.model.model_list import AtomicModel
liukaiwen's avatar
liukaiwen committed
8
from .mfr_cudagraph import GraphRunner
9
10

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
11
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
12
13
14
15
16
17
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
18
    import torchtext
19

20
21
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
22
23
24
25
26
27
28
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
29
    from doclayout_yolo import YOLOv10
赵小蒙's avatar
update:  
赵小蒙 committed
30

31
32
except ImportError as e:
    logger.exception(e)
33
34
    logger.error(
        'Required dependency not installed, please install by \n'
35
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
36
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
37

38
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
39
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
40
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
41
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
42
43
44
45
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
46
    if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
47
48
49
50
51
52
53
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
54
    return table_model
55

赵小蒙's avatar
update:  
赵小蒙 committed
56

57
58
59
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
60
61


62
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
63
64
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
65
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
66
67
68
69
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
70
    model.to(_device_)
71
    model.eval()
liukaiwen's avatar
liukaiwen committed
72
73
74
75
76
    model = model.to(_device_)
    if 'cuda' in _device_:
        decoder_runner = GraphRunner(model.model.model.decoder.model.decoder, max_batchs=128, max_kvlens=256,
                                     device=_device_)
        model.model.model.decoder.model.decoder = decoder_runner
77
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
78
79
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
80
81


82
83
84
85
86
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


87
88
89
90
91
def doclayout_yolo_model_init(weight):
    model = YOLOv10(weight)
    return model


92
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=1.8):
93
    if lang is not None:
94
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
95
    else:
96
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
97
98
99
    return model


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
116
            return image
117
118


119
120
121
122
123
124
125
126
127
128
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
129
130
131
132
133
134
        lang = kwargs.get("lang", None)
        layout_model_name = kwargs.get("layout_model_name", None)
        key = (atom_model_name, layout_model_name, lang)
        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]
135
136
137
138
139


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
140
141
142
143
144
145
146
147
148
149
        if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
            atom_model = layout_model_init(
                kwargs.get("layout_weights"),
                kwargs.get("layout_config_file"),
                kwargs.get("device")
            )
        elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
            atom_model = doclayout_yolo_model_init(
                kwargs.get("doclayout_yolo_weights"),
            )
150
151
152
153
154
155
156
157
158
159
160
161
162
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
163
164
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
165
166
167
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
168
            kwargs.get("table_model_name"),
169
170
171
172
173
174
175
176
177
178
179
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


197
class CustomPEKModel:
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
213
        with open(config_path, "r", encoding='utf-8') as f:
214
215
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
216
217
218
219
220
221
222
223
224
225
226

        # layout config
        self.layout_config = kwargs.get("layout_config")
        self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)

        # formula config
        self.formula_config = kwargs.get("formula_config")
        self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
        self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
        self.apply_formula = self.formula_config.get("enable", True)

227
        # table config
228
229
        self.table_config = kwargs.get("table_config")
        self.apply_table = self.table_config.get("enable", False)
230
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
231
232
233
        self.table_model_name = self.table_config.get("model", MODEL_NAME.TABLE_MASTER)

        # ocr config
234
        self.apply_ocr = ocr
235
        self.lang = kwargs.get("lang", None)
236

237
        logger.info(
238
239
240
            "DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
            "apply_table: {}, table_model: {}, lang: {}".format(
                self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
241
            )
242
243
        )
        # 初始化解析方案
244
        self.device = kwargs.get("device", "cpu")
245
        logger.info("using device: {}".format(self.device))
246
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
247
        logger.info("using models_dir: {}".format(models_dir))
248

249
250
        atom_model_manager = AtomModelSingleton()

251
252
        # 初始化公式识别
        if self.apply_formula:
253

254
            # 初始化公式检测模型
255
256
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
257
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
258
            )
259

260
            # 初始化公式解析模型
261
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
262
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
263
264
265
266
267
268
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
269
270

        # 初始化layout模型
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.LAYOUTLMv3,
                layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
                layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
                device=self.device
            )
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.DocLayout_YOLO,
                doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
            )
285
286
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
287

288
289
290
291
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
292
293
                det_db_box_thresh=0.3,
                lang=self.lang
294
            )
295
        # init table model
296
        if self.apply_table:
297
            table_model_dir = self.configs["weights"][self.table_model_name]
298
299
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
300
                table_model_name=self.table_model_name,
301
302
303
304
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
305

306
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
307

308
309
    def __call__(self, image):

310
311
        page_start = time.time()

312
313
314
        latex_filling_list = []
        mf_image_list = []

315
316
        # layout检测
        layout_start = time.time()
317
318
319
320
321
322
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            layout_res = self.layout_model(image, ignore_catids=[])
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
            layout_res = []
323
            doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
324
325
326
327
328
329
330
331
            for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 3),
                }
                layout_res.append(new_item)
332
        layout_cost = round(time.time() - layout_start, 2)
333
        logger.info(f"layout detection time: {layout_cost}")
334

335
336
        pil_img = Image.fromarray(image)

337
338
        if self.apply_formula:
            # 公式检测
339
            mfd_start = time.time()
340
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
341
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
342
343
344
345
346
347
348
349
350
351
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
352
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
353
354
355
356
357
358
359
360
361
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
362
363
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
364
365
366
367
368
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

385
386
387
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
388
            if total_memory <= 10:
389
390
391
392
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
393

myhloli's avatar
myhloli committed
394
        # ocr识别
395
        if self.apply_ocr:
396
            ocr_start = time.time()
397
            # Process each area that requires OCR processing
398
            for res in ocr_res_list:
399
400
401
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
402
403
404
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
405
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
406
407
408
409
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
410
                    # Filter formula blocks outside the graph
411
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
412
413
414
415
416
417
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

418
                # OCR recognition
419
420
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
421

422
                # Integration results
423
424
425
426
427
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

428
                        # Convert the coordinates back to the original coordinate system
429
430
431
432
433
434
435
436
437
438
439
440
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

441
            ocr_cost = round(time.time() - ocr_start, 2)
442
            logger.info(f"ocr time: {ocr_cost}")
443

444
445
        # 表格识别 table recognition
        if self.apply_table:
446
447
448
449
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
450
                # logger.info("------------------table recognition processing begins-----------------")
451
452
                latex_code = None
                html_code = None
453
                if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
454
                    with torch.no_grad():
455
                        latex_code = self.table_model.image2latex(new_image)[0]
456
457
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
458

459
                run_time = time.time() - single_table_start_time
460
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
461
462
463
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
464
465
466
467
468
469
470

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
471
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
472
473
                elif html_code:
                    res["html"] = html_code
474
                else:
475
476
477
478
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
479

480
        return layout_res