"host/solver/include/solver_common.hpp" did not exist on "1264925422920f24b3bb4fa34f178e31a23c97b5"
pdf_extract_kit.py 20.4 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
5
from pathlib import Path
import shutil
6
from magic_pdf.libs.Constants import *
7
from magic_pdf.libs.clean_memory import clean_memory
8
from magic_pdf.model.model_list import AtomicModel
9
10

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
11
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
12
13
14
15
16
17
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
18
    import torchtext
19

20
21
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
22
23
24
25
26
27
28
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
29
    from doclayout_yolo import YOLOv10
赵小蒙's avatar
update:  
赵小蒙 committed
30

31
32
except ImportError as e:
    logger.exception(e)
33
34
    logger.error(
        'Required dependency not installed, please install by \n'
35
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
36
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
37

38
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
39
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
40
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
41
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
42
43
44
45
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
46
    if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
47
        table_model = StructTableModel(model_path, max_time=max_time)
48
    elif table_model_type == MODEL_NAME.TABLE_MASTER:
49
50
51
52
53
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
54
55
56
    else:
        logger.error("table model type not allow")
        exit(1)
57
    return table_model
58

赵小蒙's avatar
update:  
赵小蒙 committed
59

60
61
62
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
63
64


65
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
66
67
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
68
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
69
70
71
72
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
73
    model.to(_device_)
74
    model.eval()
75
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
76
77
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
78
79


80
81
82
83
84
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


85
86
87
88
89
def doclayout_yolo_model_init(weight):
    model = YOLOv10(weight)
    return model


90
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=1.8):
91
    if lang is not None:
92
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
93
    else:
94
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
95
96
97
    return model


98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
114
            return image
115
116


117
118
119
120
121
122
123
124
125
126
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
127
128
129
130
131
132
        lang = kwargs.get("lang", None)
        layout_model_name = kwargs.get("layout_model_name", None)
        key = (atom_model_name, layout_model_name, lang)
        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]
133
134
135
136
137


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
138
139
140
141
142
143
144
145
146
147
        if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
            atom_model = layout_model_init(
                kwargs.get("layout_weights"),
                kwargs.get("layout_config_file"),
                kwargs.get("device")
            )
        elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
            atom_model = doclayout_yolo_model_init(
                kwargs.get("doclayout_yolo_weights"),
            )
148
149
150
151
152
153
154
155
156
157
158
159
160
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
161
162
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
163
164
165
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
166
            kwargs.get("table_model_name"),
167
168
169
170
171
172
173
174
175
176
177
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


195
class CustomPEKModel:
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
211
        with open(config_path, "r", encoding='utf-8') as f:
212
213
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
214
215
216
217
218
219
220
221
222
223
224

        # layout config
        self.layout_config = kwargs.get("layout_config")
        self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)

        # formula config
        self.formula_config = kwargs.get("formula_config")
        self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
        self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
        self.apply_formula = self.formula_config.get("enable", True)

225
        # table config
226
227
        self.table_config = kwargs.get("table_config")
        self.apply_table = self.table_config.get("enable", False)
228
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
229
230
231
        self.table_model_name = self.table_config.get("model", MODEL_NAME.TABLE_MASTER)

        # ocr config
232
        self.apply_ocr = ocr
233
        self.lang = kwargs.get("lang", None)
234

235
        logger.info(
236
237
238
            "DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
            "apply_table: {}, table_model: {}, lang: {}".format(
                self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
239
            )
240
241
        )
        # 初始化解析方案
242
        self.device = kwargs.get("device", "cpu")
243
        logger.info("using device: {}".format(self.device))
244
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
245
        logger.info("using models_dir: {}".format(models_dir))
246

247
248
        atom_model_manager = AtomModelSingleton()

249
250
        # 初始化公式识别
        if self.apply_formula:
251

252
            # 初始化公式检测模型
253
254
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
255
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
256
            )
257

258
            # 初始化公式解析模型
259
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
260
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
261
262
263
264
265
266
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
267
268

        # 初始化layout模型
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.LAYOUTLMv3,
                layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
                layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
                device=self.device
            )
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.DocLayout_YOLO,
                doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
            )
283
284
        # 初始化ocr
        if self.apply_ocr:
285
286
287
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
288
289
                det_db_box_thresh=0.3,
                lang=self.lang
290
            )
291
        # init table model
292
        if self.apply_table:
293
            table_model_dir = self.configs["weights"][self.table_model_name]
294
295
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
296
                table_model_name=self.table_model_name,
297
298
299
300
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
301

302
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
303

304
305
    def __call__(self, image):

306
307
        page_start = time.time()

308
309
310
        latex_filling_list = []
        mf_image_list = []

311
312
        # layout检测
        layout_start = time.time()
313
314
315
316
317
318
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            layout_res = self.layout_model(image, ignore_catids=[])
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
            layout_res = []
319
            doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
320
321
322
323
324
325
326
327
            for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 3),
                }
                layout_res.append(new_item)
328
        layout_cost = round(time.time() - layout_start, 2)
329
        logger.info(f"layout detection time: {layout_cost}")
330

331
332
        pil_img = Image.fromarray(image)

333
334
        if self.apply_formula:
            # 公式检测
335
            mfd_start = time.time()
336
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
337
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
338
339
340
341
342
343
344
345
346
347
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
348
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
349
350
351
352
353
354
355
356
357
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
358
359
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
360
361
362
363
364
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

381
        if torch.cuda.is_available() and self.device != 'cpu':
382
383
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
384
            if total_memory <= 10:
385
386
387
388
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
389

myhloli's avatar
myhloli committed
390
        # ocr识别
391
        if self.apply_ocr:
392
            ocr_start = time.time()
393
            # Process each area that requires OCR processing
394
            for res in ocr_res_list:
395
396
397
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
398
399
400
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
401
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
402
403
404
405
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
406
                    # Filter formula blocks outside the graph
407
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
408
409
410
411
412
413
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

414
                # OCR recognition
415
416
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
417

418
                # Integration results
419
420
421
422
423
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

424
                        # Convert the coordinates back to the original coordinate system
425
426
427
428
429
430
431
432
433
434
435
436
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

437
            ocr_cost = round(time.time() - ocr_start, 2)
438
            logger.info(f"ocr time: {ocr_cost}")
439

440
441
        # 表格识别 table recognition
        if self.apply_table:
442
443
444
445
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
446
                # logger.info("------------------table recognition processing begins-----------------")
447
448
                latex_code = None
                html_code = None
449
                if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
450
                    with torch.no_grad():
451
452
453
                        table_result = self.table_model.predict(new_image, "html")
                        if len(table_result) > 0:
                            html_code = table_result[0]
454
455
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
456

457
                run_time = time.time() - single_table_start_time
458
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
459
460
461
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
462
463

                if latex_code:
464
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith('end{table}')
465
466
467
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
468
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
469
                elif html_code:
470
471
472
473
474
                    expected_ending = html_code.strip().endswith('</html>') or html_code.strip().endswith('</table>')
                    if expected_ending:
                        res["html"] = html_code
                    else:
                        logger.warning(f"table recognition processing fails, not found expected HTML table end")
475
                else:
476
477
478
479
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
480

481
        return layout_res
liukaiwen's avatar
liukaiwen committed
482
483