pdf_extract_kit.py 20 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

5
from magic_pdf.libs.Constants import *
6
from magic_pdf.libs.clean_memory import clean_memory
7
from magic_pdf.model.model_list import AtomicModel
8
9

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
10
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
11
12
13
14
15
16
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
17
    import torchtext
18

19
20
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
21
22
23
24
25
26
27
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
28
    from doclayout_yolo import YOLOv10
赵小蒙's avatar
update:  
赵小蒙 committed
29

30
31
except ImportError as e:
    logger.exception(e)
32
33
    logger.error(
        'Required dependency not installed, please install by \n'
34
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
35
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
36

37
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
38
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
39
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
40
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
41
42
43
44
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
45
    if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
46
47
48
49
50
51
52
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
53
    return table_model
54

赵小蒙's avatar
update:  
赵小蒙 committed
55

56
57
58
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
59
60


61
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
62
63
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
64
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
65
66
67
68
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
69
    model.to(_device_)
70
    model.eval()
71
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
72
73
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
74
75


76
77
78
79
80
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


81
82
83
84
85
def doclayout_yolo_model_init(weight):
    model = YOLOv10(weight)
    return model


86
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=2.4):
87
    if lang is not None:
88
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
89
    else:
90
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
91
92
93
    return model


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
110
            return image
111
112


113
114
115
116
117
118
119
120
121
122
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
123
124
125
126
127
128
        lang = kwargs.get("lang", None)
        layout_model_name = kwargs.get("layout_model_name", None)
        key = (atom_model_name, layout_model_name, lang)
        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]
129
130
131
132
133


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
134
135
136
137
138
139
140
141
142
143
        if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
            atom_model = layout_model_init(
                kwargs.get("layout_weights"),
                kwargs.get("layout_config_file"),
                kwargs.get("device")
            )
        elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
            atom_model = doclayout_yolo_model_init(
                kwargs.get("doclayout_yolo_weights"),
            )
144
145
146
147
148
149
150
151
152
153
154
155
156
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
157
158
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
159
160
161
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
162
            kwargs.get("table_model_name"),
163
164
165
166
167
168
169
170
171
172
173
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


191
class CustomPEKModel:
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
207
        with open(config_path, "r", encoding='utf-8') as f:
208
209
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
210
211
212
213
214
215
216
217
218
219
220

        # layout config
        self.layout_config = kwargs.get("layout_config")
        self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)

        # formula config
        self.formula_config = kwargs.get("formula_config")
        self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
        self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
        self.apply_formula = self.formula_config.get("enable", True)

221
        # table config
222
223
        self.table_config = kwargs.get("table_config")
        self.apply_table = self.table_config.get("enable", False)
224
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
225
226
227
        self.table_model_name = self.table_config.get("model", MODEL_NAME.TABLE_MASTER)

        # ocr config
228
        self.apply_ocr = ocr
229
        self.lang = kwargs.get("lang", None)
230

231
        logger.info(
232
233
234
            "DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
            "apply_table: {}, table_model: {}, lang: {}".format(
                self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
235
            )
236
237
        )
        # 初始化解析方案
238
        self.device = kwargs.get("device", "cpu")
239
        logger.info("using device: {}".format(self.device))
240
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
241
        logger.info("using models_dir: {}".format(models_dir))
242

243
244
        atom_model_manager = AtomModelSingleton()

245
246
        # 初始化公式识别
        if self.apply_formula:
247

248
            # 初始化公式检测模型
249
250
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
251
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
252
            )
253

254
            # 初始化公式解析模型
255
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
256
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
257
258
259
260
261
262
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
263
264

        # 初始化layout模型
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.LAYOUTLMv3,
                layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
                layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
                device=self.device
            )
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            self.layout_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Layout,
                layout_model_name=MODEL_NAME.DocLayout_YOLO,
                doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
            )
279
280
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
281

282
283
284
285
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
286
287
                det_db_box_thresh=0.3,
                lang=self.lang
288
            )
289
        # init table model
290
        if self.apply_table:
291
            table_model_dir = self.configs["weights"][self.table_model_name]
292
293
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
294
                table_model_name=self.table_model_name,
295
296
297
298
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
299

300
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
301

302
303
    def __call__(self, image):

304
305
        page_start = time.time()

306
307
308
        latex_filling_list = []
        mf_image_list = []

309
310
        # layout检测
        layout_start = time.time()
311
312
313
314
315
316
        if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            layout_res = self.layout_model(image, ignore_catids=[])
        elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
            layout_res = []
317
            doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
318
319
320
321
322
323
324
325
            for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 3),
                }
                layout_res.append(new_item)
326
        layout_cost = round(time.time() - layout_start, 2)
327
        logger.info(f"layout detection time: {layout_cost}")
328

329
330
        pil_img = Image.fromarray(image)

331
332
        if self.apply_formula:
            # 公式检测
333
            mfd_start = time.time()
334
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
335
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
336
337
338
339
340
341
342
343
344
345
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
346
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
347
348
349
350
351
352
353
354
355
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
356
357
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
358
359
360
361
362
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
363

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

379
380
381
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
382
            if total_memory <= 10:
383
384
385
386
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
387

myhloli's avatar
myhloli committed
388
        # ocr识别
389
        if self.apply_ocr:
390
            ocr_start = time.time()
391
            # Process each area that requires OCR processing
392
            for res in ocr_res_list:
393
394
395
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
396
397
398
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
399
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
400
401
402
403
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
404
                    # Filter formula blocks outside the graph
405
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
406
407
408
409
410
411
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

412
                # OCR recognition
413
414
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
415

416
                # Integration results
417
418
419
420
421
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

422
                        # Convert the coordinates back to the original coordinate system
423
424
425
426
427
428
429
430
431
432
433
434
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

435
            ocr_cost = round(time.time() - ocr_start, 2)
436
            logger.info(f"ocr time: {ocr_cost}")
437

438
439
        # 表格识别 table recognition
        if self.apply_table:
440
441
442
443
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
444
                # logger.info("------------------table recognition processing begins-----------------")
445
446
                latex_code = None
                html_code = None
447
                if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
448
                    with torch.no_grad():
449
                        latex_code = self.table_model.image2latex(new_image)[0]
450
451
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
452

453
                run_time = time.time() - single_table_start_time
454
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
455
456
457
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
458
459
460
461
462
463
464

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
465
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
466
467
                elif html_code:
                    res["html"] = html_code
468
                else:
469
470
471
472
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
473

474
        return layout_res