configuration_utils.py 31.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
"""ConfigMixin base class and utilities."""

18
import dataclasses
19
import functools
20
import importlib
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
import inspect
22
23
24
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
25
from collections import OrderedDict
26
from pathlib import PosixPath
27
28
from typing import Any, Dict, Tuple, Union

29
import numpy as np
30
from huggingface_hub import create_repo, hf_hub_download
31
32
33
34
35
36
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    validate_hf_hub_args,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
from requests import HTTPError
38

Patrick von Platen's avatar
Patrick von Platen committed
39
from . import __version__
40
41
42
43
44
45
46
47
from .utils import (
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    DummyObject,
    deprecate,
    extract_commit_hash,
    http_user_agent,
    logging,
)
48

49

50
51
52
53
54
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


Patrick von Platen's avatar
Patrick von Platen committed
87
class ConfigMixin:
88
    r"""
Steven Liu's avatar
Steven Liu committed
89
90
91
    Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
    provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
    saving classes that inherit from [`ConfigMixin`].
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
95
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
96
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
97
98
          overridden by subclass).
        - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
Steven Liu's avatar
Steven Liu committed
99
        - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
100
101
          should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
          subclass).
102
    """
103

104
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
105
    ignore_for_config = []
106
    has_compatibles = False
107

108
109
    _deprecated_kwargs = []

110
    def register_to_config(self, **kwargs):
111
112
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
113
114
115
116
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
Patrick von Platen's avatar
Patrick von Platen committed
117

Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
121
122
123
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
124

Patrick von Platen's avatar
Patrick von Platen committed
125
        self._internal_dict = FrozenDict(internal_dict)
126

127
128
129
130
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
131
        This function is mostly copied from PyTorch's __getattr__ overwrite:
132
133
134
135
136
137
138
139
140
141
142
143
144
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
            return self._internal_dict[name]

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

145
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
146
        """
Steven Liu's avatar
Steven Liu committed
147
        Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
Patrick von Platen's avatar
Patrick von Platen committed
148
        [`~ConfigMixin.from_config`] class method.
149
150
151

        Args:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
152
                Directory where the configuration JSON file is saved (will be created if it does not exist).
153
154
155
156
157
158
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
159
160
161
162
163
164
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

165
166
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
167

168
        self.to_json_file(output_config_file)
Pedro Cuenca's avatar
Pedro Cuenca committed
169
        logger.info(f"Configuration saved in {output_config_file}")
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

187
    @classmethod
188
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
189
        r"""
Steven Liu's avatar
Steven Liu committed
190
        Instantiate a Python class from a config dictionary.
191
192
193

        Parameters:
            config (`Dict[str, Any]`):
Steven Liu's avatar
Steven Liu committed
194
195
                A config dictionary from which the Python class is instantiated. Make sure to only load configuration
                files of compatible classes.
196
197
198
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
199
                Can be used to update the configuration object (after it is loaded) and initiate the Python class.
Steven Liu's avatar
Steven Liu committed
200
201
                `**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
                overwrite the same named arguments in `config`.
Steven Liu's avatar
Steven Liu committed
202
203
204
205

        Returns:
            [`ModelMixin`] or [`SchedulerMixin`]:
                A model or scheduler object instantiated from a config dictionary.
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        Examples:

        ```python
        >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler

        >>> # Download scheduler from huggingface.co and cache.
        >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")

        >>> # Instantiate DDIM scheduler class with same config as DDPM
        >>> scheduler = DDIMScheduler.from_config(scheduler.config)

        >>> # Instantiate PNDM scheduler class with same config as DDPM
        >>> scheduler = PNDMScheduler.from_config(scheduler.config)
        ```
        """
        # <===== TO BE REMOVED WITH DEPRECATION
        # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
        if "pretrained_model_name_or_path" in kwargs:
            config = kwargs.pop("pretrained_model_name_or_path")

        if config is None:
            raise ValueError("Please make sure to provide a config as the first positional argument.")
        # ======>

        if not isinstance(config, dict):
            deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
            if "Scheduler" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
                    " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
                    " be removed in v1.0.0."
                )
            elif "Model" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
                    f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
                    " instead. This functionality will be removed in v1.0.0."
                )
            deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
            config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)

        init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)

        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

254
255
256
257
        # add possible deprecated kwargs
        for deprecated_kwarg in cls._deprecated_kwargs:
            if deprecated_kwarg in unused_kwargs:
                init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
258

259
260
261
262
        # Return model and optionally state and/or unused_kwargs
        model = cls(**init_dict)

        # make sure to also save config parameters that might be used for compatible classes
YiYi Xu's avatar
YiYi Xu committed
263
264
265
266
        # update _class_name
        if "_class_name" in hidden_dict:
            hidden_dict["_class_name"] = cls.__name__

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        model.register_to_config(**hidden_dict)

        # add hidden kwargs of compatible classes to unused_kwargs
        unused_kwargs = {**unused_kwargs, **hidden_dict}

        if return_unused_kwargs:
            return (model, unused_kwargs)
        else:
            return model

    @classmethod
    def get_config_dict(cls, *args, **kwargs):
        deprecation_message = (
            f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
            " removed in version v1.0.0"
        )
        deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
        return cls.load_config(*args, **kwargs)

    @classmethod
287
    @validate_hf_hub_args
288
    def load_config(
289
290
291
292
293
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        return_unused_kwargs=False,
        return_commit_hash=False,
        **kwargs,
294
295
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        r"""
Steven Liu's avatar
Steven Liu committed
296
        Load a model or scheduler configuration.
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
302
303
304
305
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
                      [`~ConfigMixin.save_config`].
Patrick von Platen's avatar
Patrick von Platen committed
306
307

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
308
309
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
314
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
315
                incompletely downloaded files are deleted.
Patrick von Platen's avatar
Patrick von Platen committed
316
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
317
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
Patrick von Platen's avatar
Patrick von Platen committed
318
319
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
320
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
321
322
323
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
324
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
325
326
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
Patrick von Platen's avatar
Patrick von Platen committed
327
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
328
329
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
330
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
331
                The subfolder location of a model file within a larger model repository on the Hub or locally.
332
            return_unused_kwargs (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
333
                Whether unused keyword arguments of the config are returned.
334
            return_commit_hash (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
335
                Whether the `commit_hash` of the loaded configuration are returned.
Patrick von Platen's avatar
Patrick von Platen committed
336

Steven Liu's avatar
Steven Liu committed
337
338
339
        Returns:
            `dict`:
                A dictionary of all the parameters stored in a JSON configuration file.
Patrick von Platen's avatar
Patrick von Platen committed
340
341

        """
342
        cache_dir = kwargs.pop("cache_dir", None)
343
344
345
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
346
        token = kwargs.pop("token", None)
347
348
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
349
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
350
        subfolder = kwargs.pop("subfolder", None)
351
        user_agent = kwargs.pop("user_agent", {})
352

353
354
        user_agent = {**user_agent, "file_type": "config"}
        user_agent = http_user_agent(user_agent)
355
356
357

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

358
359
360
361
362
363
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

364
365
366
367
368
369
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
370
371
372
373
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
374
            else:
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
389
                    token=token,
390
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
391
                    subfolder=subfolder,
392
                    revision=revision,
393
                )
394
395
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
396
397
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
398
                    " token having permission to this repo with `token` or log in with `huggingface-cli login`."
399
400
401
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
402
403
404
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
405
406
407
408
409
410
411
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
412
413
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
414
415
416
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
417
418
419
420
421
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
422
423
424
425
426
427
428
429
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
430

431
432
433
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
434
435

            commit_hash = extract_commit_hash(config_file)
436
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
437
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
438

439
440
441
442
443
        if not (return_unused_kwargs or return_commit_hash):
            return config_dict

        outputs = (config_dict,)

444
        if return_unused_kwargs:
445
446
447
448
            outputs += (kwargs,)

        if return_commit_hash:
            outputs += (commit_hash,)
449

450
        return outputs
451

452
    @staticmethod
453
454
    def _get_init_keys(input_class):
        return set(dict(inspect.signature(input_class.__init__).parameters).keys())
455

patil-suraj's avatar
patil-suraj committed
456
457
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
458
459
460
461
        # Skip keys that were not present in the original config, so default __init__ values were used
        used_defaults = config_dict.get("_use_default_values", [])
        config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}

462
        # 0. Copy origin config dict
463
        original_dict = dict(config_dict.items())
464

465
466
        # 1. Retrieve expected config attributes from __init__ signature
        expected_keys = cls._get_init_keys(cls)
467
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
468
469
470
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
471
        # remove flax internal keys
472
473
474
475
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

476
        # 2. Remove attributes that cannot be expected from expected config attributes
Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
480
481
482
483

        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])

484
485
486
487
488
        if cls.has_compatibles:
            compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
        else:
            compatible_classes = []

489
490
491
492
493
494
495
496
497
        expected_keys_comp_cls = set()
        for c in compatible_classes:
            expected_keys_c = cls._get_init_keys(c)
            expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
        expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
        config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}

        # remove attributes from orig class that cannot be expected
        orig_cls_name = config_dict.pop("_class_name", cls.__name__)
498
499
500
501
502
        if (
            isinstance(orig_cls_name, str)
            and orig_cls_name != cls.__name__
            and hasattr(diffusers_library, orig_cls_name)
        ):
503
504
505
            orig_cls = getattr(diffusers_library, orig_cls_name)
            unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
            config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
506
507
508
509
        elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
            raise ValueError(
                "Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
            )
510
511
512
513
514

        # remove private attributes
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

        # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
patil-suraj's avatar
patil-suraj committed
515
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
516
        for key in expected_keys:
517
518
519
520
521
            # if config param is passed to kwarg and is present in config dict
            # it should overwrite existing config dict key
            if key in kwargs and key in config_dict:
                config_dict[key] = kwargs.pop(key)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
522
523
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
524
525
526
527
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
528

529
        # 4. Give nice warning if unexpected values have been passed
530
531
532
533
534
535
536
        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
537
        # 5. Give nice info if config attributes are initialized to default because they have not been passed
patil-suraj's avatar
patil-suraj committed
538
        passed_keys = set(init_dict.keys())
539
        if len(expected_keys - passed_keys) > 0:
540
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
541
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
542
            )
543

544
545
546
        # 6. Define unused keyword arguments
        unused_kwargs = {**config_dict, **kwargs}

547
        # 7. Define "hidden" config parameters that were saved for compatible classes
548
        hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
549
550

        return init_dict, unused_kwargs, hidden_config_dict
Patrick von Platen's avatar
Patrick von Platen committed
551

552
553
554
555
556
557
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
558
    def __repr__(self):
559
        return f"{self.__class__.__name__} {self.to_json_string()}"
560

561
562
    @property
    def config(self) -> Dict[str, Any]:
563
564
565
566
567
568
        """
        Returns the config of the class as a frozen dictionary

        Returns:
            `Dict[str, Any]`: Config of the class.
        """
Patrick von Platen's avatar
Patrick von Platen committed
569
        return self._internal_dict
570

571
    def to_json_string(self) -> str:
572
        """
Steven Liu's avatar
Steven Liu committed
573
        Serializes the configuration instance to a JSON string.
574
575

        Returns:
Steven Liu's avatar
Steven Liu committed
576
577
            `str`:
                String containing all the attributes that make up the configuration instance in JSON format.
578
        """
579
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
580
581
582
        config_dict["_class_name"] = self.__class__.__name__
        config_dict["_diffusers_version"] = __version__

583
584
585
        def to_json_saveable(value):
            if isinstance(value, np.ndarray):
                value = value.tolist()
586
587
            elif isinstance(value, PosixPath):
                value = str(value)
588
589
590
            return value

        config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
591
        # Don't save "_ignore_files" or "_use_default_values"
Patrick von Platen's avatar
Patrick von Platen committed
592
        config_dict.pop("_ignore_files", None)
593
        config_dict.pop("_use_default_values", None)
Patrick von Platen's avatar
Patrick von Platen committed
594

595
596
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

597
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
598
        """
Steven Liu's avatar
Steven Liu committed
599
        Save the configuration instance's parameters to a JSON file.
600
601
602

        Args:
            json_file_path (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
603
                Path to the JSON file to save a configuration instance's parameters.
604
605
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
606
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
607
608


609
def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
614
615
616
617
618
619
620
621

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
622
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
647
648
649

        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
650
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
651

652
        new_kwargs = {**config_init_kwargs, **new_kwargs}
653
        getattr(self, "register_to_config")(**new_kwargs)
654
        init(self, *args, **init_kwargs)
655
656

    return inner_init
657
658
659
660
661
662
663
664
665
666
667
668
669
670


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
671
        init_kwargs = dict(kwargs.items())
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
687
688
689
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
690
691
692
693
694
695

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

696
697
        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
698
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
699

700
701
702
703
704
        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls