configuration_utils.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
16
""" ConfigMixinuration base class and utilities."""
17
import functools
Patrick von Platen's avatar
improve  
Patrick von Platen committed
18
import inspect
19
20
21
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
22
from collections import OrderedDict
23
24
from typing import Any, Dict, Tuple, Union

25
from huggingface_hub import hf_hub_download
26
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
Patrick von Platen's avatar
Patrick von Platen committed
27
from requests import HTTPError
28

Patrick von Platen's avatar
Patrick von Platen committed
29
from . import __version__
30
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
31

32

33
34
35
36
37
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


Patrick von Platen's avatar
Patrick von Platen committed
38
class ConfigMixin:
39
    r"""
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
48
49
    Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
    methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
        - [`~ConfigMixin.from_config`]
        - [`~ConfigMixin.save_config`]

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
          [`~ConfigMixin.save_config`] (should be overriden by parent class).
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
          overriden by parent class).
50
    """
51
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
52
    ignore_for_config = []
53

54
    def register_to_config(self, **kwargs):
55
56
57
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        kwargs["_class_name"] = self.__class__.__name__
58
59
        kwargs["_diffusers_version"] = __version__

60
61
62
63
64
65
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
66

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
73

Patrick von Platen's avatar
Patrick von Platen committed
74
        self._internal_dict = FrozenDict(internal_dict)
75

76
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
77
78
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
79
        [`~ConfigMixin.from_config`] class method.
80
81
82
83
84
85
86
87
88
89

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

90
91
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
92

93
        self.to_json_file(output_config_file)
Patrick von Platen's avatar
Patrick von Platen committed
94
        logger.info(f"ConfigMixinuration saved in {output_config_file}")
95

96
97
    @classmethod
    def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        r"""
        Instantiate a Python class from a pre-defined JSON-file.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
                      `./my_model_directory/`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
137
138
139
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>

        """
Patrick von Platen's avatar
Patrick von Platen committed
155
        config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
156
157
158
159
160
161
162
163
164
165

        init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)

        model = cls(**init_dict)

        if return_unused_kwargs:
            return model, unused_kwargs
        else:
            return model

166
    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
167
168
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
169
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
170
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
171
172
173
174
175
176
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
177
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
178
        subfolder = kwargs.pop("subfolder", None)
179
180
181
182
183

        user_agent = {"file_type": "config"}

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

184
185
186
187
188
189
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

190
191
192
193
194
195
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
196
197
198
199
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
200
            else:
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
217
                    subfolder=subfolder,
218
                    revision=revision,
219
220
                )

221
222
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
                    " token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
                    " login` and pass `use_auth_token=True`."
227
228
229
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
233
234
235
236
237
238
239
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
240
241
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
242
243
244
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
249
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
250
251
252
253
254
255
256
257
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
258

259
260
261
262
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
263
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
264

patil-suraj's avatar
patil-suraj committed
265
        return config_dict
266

patil-suraj's avatar
patil-suraj committed
267
268
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
269
270
        expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
271
272
273
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
patil-suraj's avatar
patil-suraj committed
277
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
278
279
280
        for key in expected_keys:
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
281
282
283
284
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
285

patil-suraj's avatar
patil-suraj committed
286
        unused_kwargs = config_dict.update(kwargs)
anton-l's avatar
Style  
anton-l committed
287

patil-suraj's avatar
patil-suraj committed
288
        passed_keys = set(init_dict.keys())
289
        if len(expected_keys - passed_keys) > 0:
Patrick von Platen's avatar
Patrick von Platen committed
290
            logger.warning(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
291
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
292
            )
293

patil-suraj's avatar
patil-suraj committed
294
        return init_dict, unused_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
295

296
297
298
299
300
301
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
302
    def __repr__(self):
303
        return f"{self.__class__.__name__} {self.to_json_string()}"
304

305
306
    @property
    def config(self) -> Dict[str, Any]:
Patrick von Platen's avatar
Patrick von Platen committed
307
        return self._internal_dict
308

309
    def to_json_string(self) -> str:
310
311
312
313
314
315
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
316
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
317
318
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

319
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
320
321
322
323
324
325
326
327
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
328
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360


class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)
361
362
363


def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
364
365
366
367
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
        init(self, *args, **init_kwargs)
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
        getattr(self, "register_to_config")(**new_kwargs)

    return inner_init