configuration_utils.py 29.1 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" ConfigMixin base class and utilities."""
17
import dataclasses
18
import functools
19
import importlib
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
import inspect
21
22
23
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
24
from collections import OrderedDict
25
from pathlib import PosixPath
26
27
from typing import Any, Dict, Tuple, Union

28
import numpy as np
29
from huggingface_hub import hf_hub_download
30
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
Patrick von Platen's avatar
Patrick von Platen committed
31
from requests import HTTPError
32

Patrick von Platen's avatar
Patrick von Platen committed
33
from . import __version__
34
35
36
37
38
39
40
41
42
from .utils import (
    DIFFUSERS_CACHE,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    DummyObject,
    deprecate,
    extract_commit_hash,
    http_user_agent,
    logging,
)
43

44

45
46
47
48
49
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


Patrick von Platen's avatar
Patrick von Platen committed
82
class ConfigMixin:
83
    r"""
Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
88
89
90
    Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
    methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
        - [`~ConfigMixin.from_config`]
        - [`~ConfigMixin.save_config`]

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
91
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
92
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
93
94
95
96
97
          overridden by subclass).
        - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
        - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the init function
          should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
          subclass).
98
    """
99
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
100
    ignore_for_config = []
101
    has_compatibles = False
102

103
104
    _deprecated_kwargs = []

105
    def register_to_config(self, **kwargs):
106
107
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
108
109
110
111
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
Patrick von Platen's avatar
Patrick von Platen committed
112

Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
119

Patrick von Platen's avatar
Patrick von Platen committed
120
        self._internal_dict = FrozenDict(internal_dict)
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129

        Tihs funtion is mostly copied from PyTorch's __getattr__ overwrite:
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
            return self._internal_dict[name]

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

140
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
141
142
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
143
        [`~ConfigMixin.from_config`] class method.
144
145
146
147
148
149
150
151
152
153

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

154
155
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
156

157
        self.to_json_file(output_config_file)
Pedro Cuenca's avatar
Pedro Cuenca committed
158
        logger.info(f"Configuration saved in {output_config_file}")
159

160
    @classmethod
161
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
162
        r"""
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        Instantiate a Python class from a config dictionary

        Parameters:
            config (`Dict[str, Any]`):
                A config dictionary from which the Python class will be instantiated. Make sure to only load
                configuration files of compatible classes.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the Python class.
                `**kwargs` will be directly passed to the underlying scheduler/model's `__init__` method and eventually
                overwrite same named arguments of `config`.

        Examples:

        ```python
        >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler

        >>> # Download scheduler from huggingface.co and cache.
        >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")

        >>> # Instantiate DDIM scheduler class with same config as DDPM
        >>> scheduler = DDIMScheduler.from_config(scheduler.config)

        >>> # Instantiate PNDM scheduler class with same config as DDPM
        >>> scheduler = PNDMScheduler.from_config(scheduler.config)
        ```
        """
        # <===== TO BE REMOVED WITH DEPRECATION
        # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
        if "pretrained_model_name_or_path" in kwargs:
            config = kwargs.pop("pretrained_model_name_or_path")

        if config is None:
            raise ValueError("Please make sure to provide a config as the first positional argument.")
        # ======>

        if not isinstance(config, dict):
            deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
            if "Scheduler" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
                    " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
                    " be removed in v1.0.0."
                )
            elif "Model" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
                    f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
                    " instead. This functionality will be removed in v1.0.0."
                )
            deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
            config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)

        init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)

        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

224
225
226
227
        # add possible deprecated kwargs
        for deprecated_kwarg in cls._deprecated_kwargs:
            if deprecated_kwarg in unused_kwargs:
                init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        # Return model and optionally state and/or unused_kwargs
        model = cls(**init_dict)

        # make sure to also save config parameters that might be used for compatible classes
        model.register_to_config(**hidden_dict)

        # add hidden kwargs of compatible classes to unused_kwargs
        unused_kwargs = {**unused_kwargs, **hidden_dict}

        if return_unused_kwargs:
            return (model, unused_kwargs)
        else:
            return model

    @classmethod
    def get_config_dict(cls, *args, **kwargs):
        deprecation_message = (
            f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
            " removed in version v1.0.0"
        )
        deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
        return cls.load_config(*args, **kwargs)

    @classmethod
    def load_config(
254
255
256
257
258
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        return_unused_kwargs=False,
        return_commit_hash=False,
        **kwargs,
259
260
261
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        r"""
        Instantiate a Python class from a config dictionary
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
                      `./my_model_directory/`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
285
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Patrick von Platen's avatar
Patrick von Platen committed
286
287
288
289
290
291
292
293
294
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
295
296
297
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
298
299
300
301
            return_unused_kwargs (`bool`, *optional*, defaults to `False):
                Whether unused keyword arguments of the config shall be returned.
            return_commit_hash (`bool`, *optional*, defaults to `False):
                Whether the commit_hash of the loaded configuration shall be returned.
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304

        <Tip>

305
306
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).
Patrick von Platen's avatar
Patrick von Platen committed
307
308
309
310
311
312
313
314
315
316

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>
        """
317
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
318
319
320
321
322
323
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
324
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
325
        subfolder = kwargs.pop("subfolder", None)
326
        user_agent = kwargs.pop("user_agent", {})
327

328
329
        user_agent = {**user_agent, "file_type": "config"}
        user_agent = http_user_agent(user_agent)
330
331
332

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

333
334
335
336
337
338
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

339
340
341
342
343
344
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
349
            else:
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
366
                    subfolder=subfolder,
367
                    revision=revision,
368
                )
369
370
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
371
372
373
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
                    " token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
374
                    " login`."
375
376
377
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
378
379
380
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
381
382
383
384
385
386
387
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
388
389
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
390
391
392
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
396
397
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
398
399
400
401
402
403
404
405
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
406

407
408
409
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
410
411

            commit_hash = extract_commit_hash(config_file)
412
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
413
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
414

415
416
417
418
419
        if not (return_unused_kwargs or return_commit_hash):
            return config_dict

        outputs = (config_dict,)

420
        if return_unused_kwargs:
421
422
423
424
            outputs += (kwargs,)

        if return_commit_hash:
            outputs += (commit_hash,)
425

426
        return outputs
427

428
429
430
431
    @staticmethod
    def _get_init_keys(cls):
        return set(dict(inspect.signature(cls.__init__).parameters).keys())

patil-suraj's avatar
patil-suraj committed
432
433
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
434
        # 0. Copy origin config dict
435
        original_dict = dict(config_dict.items())
436

437
438
        # 1. Retrieve expected config attributes from __init__ signature
        expected_keys = cls._get_init_keys(cls)
439
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
440
441
442
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
443
        # remove flax internal keys
444
445
446
447
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

448
        # 2. Remove attributes that cannot be expected from expected config attributes
Patrick von Platen's avatar
Patrick von Platen committed
449
450
451
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
452
453
454
455

        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])

456
457
458
459
460
        if cls.has_compatibles:
            compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
        else:
            compatible_classes = []

461
462
463
464
465
466
467
468
469
        expected_keys_comp_cls = set()
        for c in compatible_classes:
            expected_keys_c = cls._get_init_keys(c)
            expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
        expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
        config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}

        # remove attributes from orig class that cannot be expected
        orig_cls_name = config_dict.pop("_class_name", cls.__name__)
470
        if orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name):
471
472
473
474
475
476
477
478
            orig_cls = getattr(diffusers_library, orig_cls_name)
            unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
            config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}

        # remove private attributes
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

        # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
patil-suraj's avatar
patil-suraj committed
479
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
480
        for key in expected_keys:
481
482
483
484
485
            # if config param is passed to kwarg and is present in config dict
            # it should overwrite existing config dict key
            if key in kwargs and key in config_dict:
                config_dict[key] = kwargs.pop(key)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
486
487
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
488
489
490
491
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
492

493
        # 4. Give nice warning if unexpected values have been passed
494
495
496
497
498
499
500
        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

501
        # 5. Give nice info if config attributes are initiliazed to default because they have not been passed
patil-suraj's avatar
patil-suraj committed
502
        passed_keys = set(init_dict.keys())
503
        if len(expected_keys - passed_keys) > 0:
504
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
505
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
506
            )
507

508
509
510
        # 6. Define unused keyword arguments
        unused_kwargs = {**config_dict, **kwargs}

511
        # 7. Define "hidden" config parameters that were saved for compatible classes
512
        hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
513
514

        return init_dict, unused_kwargs, hidden_config_dict
Patrick von Platen's avatar
Patrick von Platen committed
515

516
517
518
519
520
521
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
522
    def __repr__(self):
523
        return f"{self.__class__.__name__} {self.to_json_string()}"
524

525
526
    @property
    def config(self) -> Dict[str, Any]:
527
528
529
530
531
532
        """
        Returns the config of the class as a frozen dictionary

        Returns:
            `Dict[str, Any]`: Config of the class.
        """
Patrick von Platen's avatar
Patrick von Platen committed
533
        return self._internal_dict
534

535
    def to_json_string(self) -> str:
536
537
538
539
540
541
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
542
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
543
544
545
        config_dict["_class_name"] = self.__class__.__name__
        config_dict["_diffusers_version"] = __version__

546
547
548
        def to_json_saveable(value):
            if isinstance(value, np.ndarray):
                value = value.tolist()
549
550
            elif isinstance(value, PosixPath):
                value = str(value)
551
552
553
            return value

        config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
Patrick von Platen's avatar
Patrick von Platen committed
554
555
556
        # Don't save "_ignore_files"
        config_dict.pop("_ignore_files", None)

557
558
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

559
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
560
561
562
563
564
565
566
567
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
568
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
569
570


571
def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
572
573
574
575
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
576
577
578
579
580
581
582
583

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
584
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
609
        new_kwargs = {**config_init_kwargs, **new_kwargs}
610
        getattr(self, "register_to_config")(**new_kwargs)
611
        init(self, *args, **init_kwargs)
612
613

    return inner_init
614
615
616
617
618
619
620
621
622
623
624
625
626
627


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
628
        init_kwargs = dict(kwargs.items())
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
644
645
646
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
647
648
649
650
651
652
653
654
655
656
657

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls