configuration_utils.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
16
""" ConfigMixinuration base class and utilities."""
17
18
19


import copy
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
import inspect
21
22
23
24
25
26
import json
import os
import re
from typing import Any, Dict, Tuple, Union

from requests import HTTPError
27
28
29
30
from huggingface_hub import hf_hub_download


from .utils import (
31
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
32
    DIFFUSERS_CACHE,
33
34
35
36
37
38
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    logging,
)

39

40
41
42
43
44
45
46
47
from . import __version__


logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


Patrick von Platen's avatar
Patrick von Platen committed
48
class ConfigMixin:
49
50
51
52
53
    r"""
    Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
    methods for loading/downloading/saving configurations.

    """
54
    config_name = None
55

56
57
58
59
60
61
62
63
64
65
    def register(self, **kwargs):
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        kwargs["_class_name"] = self.__class__.__name__
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
66

67
68
        if not hasattr(self, "_dict_to_save"):
            self._dict_to_save = {}
69

70
        self._dict_to_save.update(kwargs)
71

72
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
73
74
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
75
        [`~ConfigMixin.from_config`] class method.
76
77
78
79
80
81
82
83
84
85
86
87

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
            kwargs:
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

88
89
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
90

91
        self.to_json_file(output_config_file)
Patrick von Platen's avatar
Patrick von Platen committed
92
        logger.info(f"ConfigMixinuration saved in {output_config_file}")
93
94

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
95
96
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
97
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
98
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
99
100
101
102
103
104
105
106
107
108
109
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        user_agent = {"file_type": "config"}

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

110
111
112
113
114
115
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
116
            else:
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
133
134
                )

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            except RepositoryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed on "
                    "'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having "
                    "permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass "
                    "`use_auth_token=True`."
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this "
                    f"model name. Check the model page at 'https://huggingface.co/{pretrained_model_name_or_path}' for "
                    "available revisions."
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
                    f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}"
                )
            except ValueError:
                raise EnvironmentError(
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in"
                    f" the cached files and it looks like {pretrained_model_name_or_path} is not the path to a directory"
                    f" containing a {cls.config_name} file.\nCheckout your internet connection or see how to run the"
                    " library in offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
170

171
172
173
174
175
176
177
            try:
                # Load config dict
                config_dict = cls._dict_from_json_file(config_file)
            except (json.JSONDecodeError, UnicodeDecodeError):
                raise EnvironmentError(
                    f"It looks like the config file at '{config_file}' is not a valid JSON file."
                )
178

patil-suraj's avatar
patil-suraj committed
179
        return config_dict
180

patil-suraj's avatar
patil-suraj committed
181
182
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
183
184
        expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
        expected_keys.remove("self")
patil-suraj's avatar
patil-suraj committed
185
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
186
187
188
        for key in expected_keys:
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
189
190
191
192
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
193

patil-suraj's avatar
patil-suraj committed
194
195
        unused_kwargs = config_dict.update(kwargs)
        passed_keys = set(init_dict.keys())
196
197
        if len(expected_keys - passed_keys) > 0:
            logger.warn(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
198
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
199
            )
200

patil-suraj's avatar
patil-suraj committed
201
        return init_dict, unused_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
202
203

    @classmethod
Patrick von Platen's avatar
improve  
Patrick von Platen committed
204
    def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
patil-suraj's avatar
patil-suraj committed
205
        config_dict = cls.get_config_dict(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
206
207
            pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs
        )
Patrick von Platen's avatar
Patrick von Platen committed
208

patil-suraj's avatar
patil-suraj committed
209
210
211
        init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)

        model = cls(**init_dict)
212
213

        if return_unused_kwargs:
214
            return model, unused_kwargs
215
        else:
216
            return model
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)

239
        # Diffusion version when serializing the model
240
241
242
243
        output["diffusers_version"] = __version__

        return output

244
    def to_json_string(self) -> str:
245
246
247
248
249
250
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
251
        config_dict = self._dict_to_save
252
253
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

254
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
255
256
257
258
259
260
261
262
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
263
            writer.write(self.to_json_string())