test_pipelines.py 49.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import random
18
19
20
21
22
23
24
import tempfile
import unittest

import numpy as np
import torch

import PIL
25
from datasets import load_dataset
26
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionOnnxPipeline,
44
    StableDiffusionPipeline,
45
    UNet2DConditionModel,
46
    UNet2DModel,
47
    VQModel,
48
49
)
from diffusers.pipeline_utils import DiffusionPipeline
50
51
52
from diffusers.testing_utils import floats_tensor, slow, torch_device
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
53
54
55
56
57


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
58
59
60
61
62
63
64
65
66
67
68
69
70
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
71
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
72
73
74
75
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
76
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
77
78
79
80
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


81
class PipelineFastTests(unittest.TestCase):
82
83
84
85
86
87
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, False

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
196
        ddpm.set_progress_bar_config(disable=None)
197

198
199
200
201
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

202
        generator = torch.manual_seed(0)
203
204
205
206
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
207
208

        image_slice = image[0, -3:, -3:, -1]
209
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
210
211
212
213
214

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
215
216
217
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
218
219
220
221
222
223
224

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
225
        pndm.set_progress_bar_config(disable=None)
226
227
228
229

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

230
        generator = torch.manual_seed(0)
231
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
232
233

        image_slice = image[0, -3:, -3:, -1]
234
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
235
236
237
238

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
239
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
240
241
242
243
244
245
246
247
248
249

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
250
        ldm.set_progress_bar_config(disable=None)
251
252

        prompt = "A painting of a squirrel eating a burger"
253
254
255
256
257
258
259
260

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy")[
                "sample"
            ]

261
262
263
264
265
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

266
267
268
269
270
271
272
273
274
275
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

276
        image_slice = image[0, -3:, -3:, -1]
277
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
278
279
280
281

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
282
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
283
284

    def test_stable_diffusion_ddim(self):
285
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
309
        sd_pipe = sd_pipe.to(device)
310
        sd_pipe.set_progress_bar_config(disable=None)
311
312

        prompt = "A painting of a squirrel eating a burger"
313

314
315
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
316
        image = output.images
317

318
319
320
321
322
323
324
325
326
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
327
328

        image_slice = image[0, -3:, -3:, -1]
329
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
330
331
332

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
333

334
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
335
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
336
337

    def test_stable_diffusion_pndm(self):
338
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
355
        sd_pipe = sd_pipe.to(device)
356
        sd_pipe.set_progress_bar_config(disable=None)
357
358

        prompt = "A painting of a squirrel eating a burger"
359
360
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
361

362
363
364
365
366
367
368
369
370
371
372
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
373
374

        image_slice = image[0, -3:, -3:, -1]
375
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
376
377
378
379

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
380
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
381
382

    def test_stable_diffusion_k_lms(self):
383
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
400
        sd_pipe = sd_pipe.to(device)
401
        sd_pipe.set_progress_bar_config(disable=None)
402
403

        prompt = "A painting of a squirrel eating a burger"
404
405
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
406

407
408
409
410
411
412
413
414
415
416
417
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
418
419

        image_slice = image[0, -3:, -3:, -1]
420
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
421
422
423
424

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
425
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

459
460
461
462
463
464
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = ScoreSdeVeScheduler(tensor_format="pt")

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
465
        sde_ve.set_progress_bar_config(disable=None)
466

467
468
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
469

470
471
472
473
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
474
475

        image_slice = image[0, -3:, -3:, -1]
476
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
477
478
479
480

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
481
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
482
483
484
485
486
487
488
489

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
490
        ldm.set_progress_bar_config(disable=None)
491

492
493
494
495
496
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

497
        generator = torch.manual_seed(0)
498
499
500
501
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
502
503

        image_slice = image[0, -3:, -3:, -1]
504
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
505
506
507
508

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
509
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
510
511
512
513
514
515
516

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
517
        pipe.set_progress_bar_config(disable=None)
518
519

        generator = torch.manual_seed(0)
520
521
522
523
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
524
525

        image_slice = image[0, -3:, -3:, -1]
526
527
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

528
529
530
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
531
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
532
533

    def test_stable_diffusion_img2img(self):
534
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
535
536
537
538
539
540
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

541
        init_image = self.dummy_image.to(device)
542
543
544
545
546
547
548
549
550
551
552

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
553
        sd_pipe = sd_pipe.to(device)
554
        sd_pipe.set_progress_bar_config(disable=None)
555
556

        prompt = "A painting of a squirrel eating a burger"
557
558
559
560
561
562
563
564
565
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
566

567
568
569
570
571
572
573
574
575
576
577
578
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
579
580

        image_slice = image[0, -3:, -3:, -1]
581
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
582
583
584
585

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
586
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
622
        image = output.images
623

624
625
626
627
628
629
630
631
632
633
634
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
635
636

        image_slice = image[0, -3:, -3:, -1]
637
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
638
639
640
641

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
642
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
643

644
    def test_stable_diffusion_inpaint(self):
645
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
646
647
648
649
650
651
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

652
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
653
654
655
656
657
658
659
660
661
662
663
664
665
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
666
        sd_pipe = sd_pipe.to(device)
667
        sd_pipe.set_progress_bar_config(disable=None)
668
669

        prompt = "A painting of a squirrel eating a burger"
670
671
672
673
674
675
676
677
678
679
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
680

681
682
683
684
685
686
687
688
689
690
691
692
693
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
694
695

        image_slice = image[0, -3:, -3:, -1]
696
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
697
698
699
700

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
701
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
702
703


704
class PipelineTesterMixin(unittest.TestCase):
705
706
707
708
709
710
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

711
712
713
714
715
716
717
718
719
720
721
722
723
724
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
725
        ddpm.to(torch_device)
726
        ddpm.set_progress_bar_config(disable=None)
727
728
729
730

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
731
            new_ddpm.to(torch_device)
732
733

        generator = torch.manual_seed(0)
734
        image = ddpm(generator=generator, output_type="numpy").images
735

736
        generator = generator.manual_seed(0)
737
        new_image = new_ddpm(generator=generator, output_type="numpy").images
738
739
740
741
742
743
744

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

745
        scheduler = DDPMScheduler(num_train_timesteps=10)
746

747
748
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
749
        ddpm.set_progress_bar_config(disable=None)
750
751
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
752
        ddpm_from_hub.set_progress_bar_config(disable=None)
753
754

        generator = torch.manual_seed(0)
755
        image = ddpm(generator=generator, output_type="numpy").images
756

757
        generator = generator.manual_seed(0)
758
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
759
760
761
762
763
764
765

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

766
767
        scheduler = DDPMScheduler(num_train_timesteps=10)

768
769
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
770
771
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
772
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
773

774
775
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
776
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
777
778

        generator = torch.manual_seed(0)
779
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
780

781
        generator = generator.manual_seed(0)
782
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
783
784
785
786
787
788
789
790

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
791
        pipe.to(torch_device)
792
        pipe.set_progress_bar_config(disable=None)
793
794

        generator = torch.manual_seed(0)
795
        images = pipe(generator=generator, output_type="numpy").images
796
797
798
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

799
        images = pipe(generator=generator, output_type="pil").images
800
801
802
803
804
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
805
        images = pipe(generator=generator).images
806
807
808
809
810
811
812
813
814
815
816
817
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
818
        ddpm.to(torch_device)
819
        ddpm.set_progress_bar_config(disable=None)
820
821

        generator = torch.manual_seed(0)
822
        image = ddpm(generator=generator, output_type="numpy").images
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
838
        ddpm.to(torch_device)
839
        ddpm.set_progress_bar_config(disable=None)
840
841

        generator = torch.manual_seed(0)
842
        image = ddpm(generator=generator, output_type="numpy").images
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler(tensor_format="pt")

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
858
        ddim.to(torch_device)
859
        ddim.set_progress_bar_config(disable=None)
860
861

        generator = torch.manual_seed(0)
862
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
878
        pndm.to(torch_device)
879
        pndm.set_progress_bar_config(disable=None)
880
        generator = torch.manual_seed(0)
881
        image = pndm(generator=generator, output_type="numpy").images
882
883
884
885
886
887
888
889
890
891

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
892
        ldm.to(torch_device)
893
        ldm.set_progress_bar_config(disable=None)
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
910
        ldm.to(torch_device)
911
        ldm.set_progress_bar_config(disable=None)
912
913
914

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
915
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
916
917
918
919
920
921
922
923
924
925
926

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
927
928
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
929
        sd_pipe.set_progress_bar_config(disable=None)
930
931
932
933
934
935
936
937

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

938
        image = output.images
939
940
941
942
943
944
945
946
947
948

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
949
950
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
951
        sd_pipe.set_progress_bar_config(disable=None)
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
967
        image = output.images
968
969
970
971

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
972
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
973
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
974
975
976
977
978
979
980
981
982

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
983
        sde_ve.to(torch_device)
984
        sde_ve.set_progress_bar_config(disable=None)
985

986
987
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
988
989
990
991
992

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

993
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
994
995
996
997
998
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
999
        ldm.to(torch_device)
1000
        ldm.set_progress_bar_config(disable=None)
1001
1002

        generator = torch.manual_seed(0)
1003
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1020
        ddpm.to(torch_device)
1021
        ddpm.set_progress_bar_config(disable=None)
1022
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1023
        ddim.to(torch_device)
1024
        ddim.set_progress_bar_config(disable=None)
1025
1026

        generator = torch.manual_seed(0)
1027
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1028
1029

        generator = torch.manual_seed(0)
1030
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1044
        ddpm.to(torch_device)
1045
        ddpm.set_progress_bar_config(disable=None)
1046

1047
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1048
        ddim.to(torch_device)
1049
        ddim.set_progress_bar_config(disable=None)
1050
1051

        generator = torch.manual_seed(0)
1052
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1069
        pipe.to(torch_device)
1070
        pipe.set_progress_bar_config(disable=None)
1071
1072

        generator = torch.manual_seed(0)
1073
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
1085
        pipe.set_progress_bar_config(disable=None)
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1099
1100
1101

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        ).to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1142
    def test_stable_diffusion_img2img_pipeline(self):
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/sketch-mountains-input.jpg"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/fantasy_landscape.png"
                ],
            },
        )
1156

1157
1158
        init_image = ds["input"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1159
1160

        model_id = "CompVis/stable-diffusion-v1-4"
1161
1162
1163
1164
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            use_auth_token=True,
        )
1165
        pipe.to(torch_device)
1166
        pipe.enable_attention_slicing()
1167
        pipe.set_progress_bar_config(disable=None)
1168
1169
1170
1171

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1172
1173
1174
        with torch.autocast("cuda"):
            output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
        image = output.images[0]
1175

1176
1177
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1178
1179
1180
1181
1182
1183

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1184
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/sketch-mountains-input.jpg"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/fantasy_landscape_k_lms.png"
                ],
            },
        )
1198

1199
1200
        init_image = ds["input"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1201
1202
1203
1204

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1205
1206
1207
1208
1209
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            use_auth_token=True,
        )
1210
        pipe.enable_attention_slicing()
1211
1212
1213
1214
1215
1216
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1217
1218
        with torch.autocast("cuda"):
            output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
1219
        image = output.images[0]
1220

1221
1222
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1223
1224
1225
1226
1227
1228

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1229
    def test_stable_diffusion_inpaint_pipeline(self):
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/overture-creations-5sI6fQgYIuo.png"
                ],
                "mask": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/red_cat_sitting_on_a_parking_bench.png"
                ],
            },
        )
1247

1248
1249
1250
        init_image = ds["input"]["image"][0].resize((768, 512))
        mask_image = ds["mask"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1251
1252

        model_id = "CompVis/stable-diffusion-v1-4"
1253
1254
1255
1256
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            use_auth_token=True,
        )
1257
        pipe.to(torch_device)
1258
        pipe.enable_attention_slicing()
1259
        pipe.set_progress_bar_config(disable=None)
1260
1261
1262
1263

        prompt = "A red cat sitting on a parking bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        with torch.autocast("cuda"):
            output = pipe(
                prompt=prompt,
                init_image=init_image,
                mask_image=mask_image,
                strength=0.75,
                guidance_scale=7.5,
                generator=generator,
            )
        image = output.images[0]
1274

1275
1276
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1277
1278
1279

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-3
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

    @slow
    def test_stable_diffusion_onnx(self):
        from scripts.convert_stable_diffusion_checkpoint_to_onnx import convert_models

        with tempfile.TemporaryDirectory() as tmpdirname:
            convert_models("CompVis/stable-diffusion-v1-4", tmpdirname, opset=14)

            sd_pipe = StableDiffusionOnnxPipeline.from_pretrained(tmpdirname, provider="CUDAExecutionProvider")

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=20, output_type="np")
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0385, 0.0252, 0.0234, 0.0287, 0.0358, 0.0287, 0.0276, 0.0235, 0.0010])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3