scheduling_pndm.py 7.87 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
Patrick von Platen's avatar
Patrick von Platen committed
18

19
20
import numpy as np

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
37

38
39
40
41
42
43
44
45
46
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
47
48
49
50
51
52
53
54
55
56
57
58


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
59
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
63
64
65
66
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )

        if beta_schedule == "linear":
67
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
68
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
69
            # Glide cosine schedule
70
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
74
75
76
77
78
79
80
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
81
82
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
83
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
87
        self.cur_residual = 0
88
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
89
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
90
        self.prk_time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
91
        self.time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
92
        self.set_prk_mode()
Patrick von Platen's avatar
Patrick von Platen committed
93

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
    def get_prk_time_steps(self, num_inference_steps):
        if num_inference_steps in self.prk_time_steps:
            return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
97

98
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
99

Patrick von Platen's avatar
Patrick von Platen committed
100
        prk_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
101
            np.array([0, self.config.timesteps // num_inference_steps // 2]), self.pndm_order
102
        )
Patrick von Platen's avatar
Patrick von Platen committed
103
        self.prk_time_steps[num_inference_steps] = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1]))
Patrick von Platen's avatar
Patrick von Platen committed
104

Patrick von Platen's avatar
Patrick von Platen committed
105
        return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
106

Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
110

111
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
112
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
113

Patrick von Platen's avatar
Patrick von Platen committed
114
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
115

Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def set_prk_mode(self):
        self.mode = "prk"

    def set_plms_mode(self):
        self.mode = "plms"

    def step(self, *args, **kwargs):
        if self.mode == "prk":
            return self.step_prk(*args, **kwargs)
        if self.mode == "plms":
            return self.step_plms(*args, **kwargs)

        raise ValueError(f"mode {self.mode} does not exist.")

130
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
131
        prk_time_steps = self.get_prk_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
132

Patrick von Platen's avatar
Patrick von Platen committed
133
134
        t_orig = prk_time_steps[t // 4 * 4]
        t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
135

Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
139
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
143
144
145
146
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
147

Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
151
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

        return self.get_prev_sample(cur_sample, t_orig, t_orig_prev, residual)
Patrick von Platen's avatar
Patrick von Platen committed
152

153
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157
158
159
160
161
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
162
163
        timesteps = self.get_time_steps(num_inference_steps)

Patrick von Platen's avatar
Patrick von Platen committed
164
165
        t_orig = timesteps[t]
        t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
169
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        return self.get_prev_sample(sample, t_orig, t_orig_prev, residual)

    def get_prev_sample(self, sample, t_orig, t_orig_prev, residual):
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # residual -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
185
186
        alpha_prod_t = self.alphas_cumprod[t_orig + 1]
        alpha_prod_t_prev = self.alphas_cumprod[t_orig_prev + 1]
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        residual_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * residual / residual_denom_coeff

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
205
206

    def __len__(self):
207
        return self.config.timesteps