scheduling_pndm.py 6.07 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
        self.timesteps = int(timesteps)

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
62
63
64
65
66
        # hardcode for now
        self.pndm_order = 4
        self.cur_residual = 0

        # running values
        self.ets = []
        self.warmup_time_steps = {}
        self.time_steps = {}

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    #        self.register_buffer("betas", betas.to(torch.float32))
    #        self.register_buffer("alphas", alphas.to(torch.float32))
    #        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
95
96
97
    def get_warmup_time_steps(self, num_inference_steps):
        if num_inference_steps in self.warmup_time_steps:
            return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
        warmup_time_steps = np.array(inference_step_times[-self.pndm_order:]).repeat(2) + np.tile(np.array([0, self.timesteps // num_inference_steps // 2]), self.pndm_order)
        self.warmup_time_steps[num_inference_steps] = list(reversed(warmup_time_steps[:-1].repeat(2)[1:-1]))

        return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
105

Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
109

Patrick von Platen's avatar
Patrick von Platen committed
110
111
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
112

Patrick von Platen's avatar
Patrick von Platen committed
113
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
116
    def step_warm_up(self, residual, image, t, num_inference_steps):
        warmup_time_steps = self.get_warmup_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
117

Patrick von Platen's avatar
Patrick von Platen committed
118
119
        t_prev = warmup_time_steps[t // 4 * 4]
        t_next = warmup_time_steps[min(t + 1, len(warmup_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
120

Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
125
126
127
128
129
130
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
131

Patrick von Platen's avatar
Patrick von Platen committed
132
        return self.transfer(image, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
133

Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139
140
141
142
143
    def step(self, residual, image, t, num_inference_steps):
        timesteps = self.get_time_steps(num_inference_steps)

        t_prev = timesteps[t]
        t_next = timesteps[min(t + 1, len(timesteps) - 1)]
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

        return self.transfer(image, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
144

Patrick von Platen's avatar
Patrick von Platen committed
145
    def transfer(self, x, t, t_next, et):
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
        # TODO(Patrick): clean up to be compatible with numpy and give better names

        alphas_cump = self.alphas_cumprod.to(x.device)
        at = alphas_cump[t + 1].view(-1, 1, 1, 1)
        at_next = alphas_cump[t_next + 1].view(-1, 1, 1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
155
156
157
158

        x_delta = (at_next - at) * ((1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et)

        x_next = x + x_delta
        return x_next

    def __len__(self):
        return self.timesteps