test_scheduler.py 40.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
15
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
16
import unittest
17
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import numpy as np
import torch

22
from diffusers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
31
32

    @property
33
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

39
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
40

41
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
42
43

    @property
44
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
51
        sample = torch.arange(num_elems)
52
53
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
54
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
55

56
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
62
63
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

        return model

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

70
71
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
72
        for scheduler_class in self.scheduler_classes:
73
74
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

83
84
85
86
87
88
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

89
90
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
91

92
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

98
99
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
100
        for scheduler_class in self.scheduler_classes:
101
102
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

111
112
113
114
115
116
117
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
118
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
119
            torch.manual_seed(0)
120
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
121

122
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
        kwargs = dict(self.forward_default_kwargs)

127
128
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
129
        for scheduler_class in self.scheduler_classes:
130
131
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

140
141
142
143
144
145
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

146
            torch.manual_seed(0)
147
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
148
            torch.manual_seed(0)
149
            new_output = new_scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
150

151
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

156
157
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

162
163
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
168
169
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

170
171
            output_0 = scheduler.step(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
172

173
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
174
175
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

179
180
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
181
        for scheduler_class in self.scheduler_classes:
182
            sample_pt = self.dummy_sample
183
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
187
            sample = sample_pt.numpy()
            residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
188
            scheduler_config = self.get_scheduler_config()
189
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

193
194
195
196
197
198
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

199
200
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
201

Patrick von Platen's avatar
Patrick von Platen committed
202
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_dict = scheduler.step(residual, 0, sample, **kwargs)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_tuple = scheduler.step(residual, 0, sample, return_dict=False, **kwargs)

            recursive_check(outputs_tuple, outputs_dict)

Patrick von Platen's avatar
Patrick von Platen committed
257
258

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
259
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
263
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
268
            "clip_sample": True,
269
            "tensor_format": "pt",
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
274

Patrick von Platen's avatar
Patrick von Platen committed
275
276
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
277
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
283
284
285
286
287
288
289
290

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

291
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
292
293
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
294
295
296
297
298
299
300
301
302
303

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

304
305
306
307
308
309
310
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

    # TODO Make DDPM Numpy compatible
    def test_pytorch_equal_numpy(self):
        pass
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
314
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
320
        sample = self.dummy_sample_deter
321
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
322
323
324

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
325
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
326

327
            # 2. predict previous mean of sample x_t-1
328
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
329

330
331
332
333
334
335
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
336

337
338
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
339

340
        assert abs(result_sum.item() - 258.9070) < 1e-2
341
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
342

Patrick von Platen's avatar
update  
Patrick von Platen committed
343

Patrick von Platen's avatar
Patrick von Platen committed
344
345
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
346
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
347

Patrick von Platen's avatar
Patrick von Platen committed
348
349
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
350
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
351
352
353
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
354
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
355
        }
Patrick von Platen's avatar
Patrick von Platen committed
356

Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
        config.update(**kwargs)
        return config

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps, eta = 10, 0.0

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta).prev_sample

        return sample

Patrick von Platen's avatar
Patrick von Platen committed
378
    def test_timesteps(self):
379
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
380
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
381

382
383
384
385
386
387
388
389
390
391
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(5)
        assert torch.equal(scheduler.timesteps, torch.tensor([801, 601, 401, 201, 1]))

Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
395
396
397
398
399
    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

400
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
401
402
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
403
404
405
406
407
408
409

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
410
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
411
412
413
414
415
416
417

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
418
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
419
420
        scheduler = scheduler_class(**scheduler_config)

421
422
423
424
425
426
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
427
428

    def test_full_loop_no_noise(self):
429
        sample = self.full_loop()
Patrick von Platen's avatar
Patrick von Platen committed
430

431
432
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
433

434
435
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
436

437
438
439
440
441
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
442

443
444
        assert abs(result_sum.item() - 149.8295) < 1e-2
        assert abs(result_mean.item() - 0.1951) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
445

446
447
448
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
449
450
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
451

452
453
        assert abs(result_sum.item() - 149.0784) < 1e-2
        assert abs(result_mean.item() - 0.1941) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
454
455
456
457
458
459
460
461


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
462
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
463
464
465
466
467
468
469
470
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

471
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
472
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
473
        num_inference_steps = kwargs.pop("num_inference_steps", None)
474
475
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
479
480
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
481
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
482
483
484
485
486
487
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
488
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
489
490
491
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

492
493
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
494

495
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
496

497
498
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
499

500
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
501
502
503
504
505

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
506
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
507
        num_inference_steps = kwargs.pop("num_inference_steps", None)
508
509
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
510
511
512
513
514
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
515
            scheduler.set_timesteps(num_inference_steps)
516

Nathan Lambert's avatar
Nathan Lambert committed
517
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
518
519
520
521
522
523
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
524
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
525

Nathan Lambert's avatar
Nathan Lambert committed
526
527
528
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

529
530
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
531

532
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
533

534
535
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
536

537
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_prk(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_plms(residual, t, sample).prev_sample

        return sample

559
560
561
562
563
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
564
            sample_pt = self.dummy_sample
565
566
567
            residual_pt = 0.1 * sample_pt
            dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]

568
569
570
571
            sample = sample_pt.numpy()
            residual = 0.1 * sample
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

572
            scheduler_config = self.get_scheduler_config()
573
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
574
575
576
577
578
579
580
581
582

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
583
584
585
586
            # copy over dummy past residuals (must be done after set_timesteps)
            scheduler.ets = dummy_past_residuals[:]
            scheduler_pt.ets = dummy_past_residuals_pt[:]

587
588
            output = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, **kwargs).prev_sample
589
590
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

591
592
            output = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, **kwargs).prev_sample
593
594
595

            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    def test_set_format(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)

            for key, value in vars(scheduler).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to np format, the attribute {key} is {type(value)}"

            # check if `scheduler.set_format` does convert correctly attrs to pt format
            for key, value in vars(scheduler_pt).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
                assert not isinstance(
                    value, np.ndarray
                ), f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
642
643
644
645
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

646
647
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
648
649
650
651

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

652
653
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
654
655
656
657

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
658
659
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
660
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(10)
        assert torch.equal(
            scheduler.timesteps,
            torch.tensor(
                [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
            ),
        )

Patrick von Platen's avatar
Patrick von Platen committed
677
    def test_betas(self):
678
        for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
Patrick von Platen's avatar
Patrick von Platen committed
679
680
681
682
683
684
685
686
687
688
689
690
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
691
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
692

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_pow_of_3_inference_steps(self):
        # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
        num_inference_steps = 27

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)

            # before power of 3 fix, would error on first step, so we only need to do two
            for i, t in enumerate(scheduler.prk_timesteps[:2]):
                sample = scheduler.step_prk(residual, t, sample).prev_sample

710
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
711
712
713
714
715
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

716
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
717
718

    def test_full_loop_no_noise(self):
719
720
721
        sample = self.full_loop()
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
722

723
724
        assert abs(result_sum.item() - 198.1318) < 1e-2
        assert abs(result_mean.item() - 0.2580) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
725

726
727
728
729
730
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
731

732
733
        assert abs(result_sum.item() - 230.0399) < 1e-2
        assert abs(result_mean.item() - 0.2995) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
734

735
736
737
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
738
739
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
740

741
742
        assert abs(result_sum.item() - 186.9482) < 1e-2
        assert abs(result_mean.item() - 0.2434) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
743
744


745
746
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
747
    scheduler_classes = (ScoreSdeVeScheduler,)
748
    forward_default_kwargs = ()
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
781
782
783
784
785
786
787
788

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
789
            "tensor_format": "pt",  # TODO add test for tensor formats
Nathan Lambert's avatar
Nathan Lambert committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

809
810
811
812
813
814
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
815

816
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
817

818
819
820
821
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
822

823
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

840
841
842
843
844
845
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
846

847
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
848

849
850
851
852
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
853

854
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
855
856
857
858
859
860
861
862
863
864

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
865
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
866
867
868
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
869
870
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
871
872
873
874
875
876
877
878
879
880
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
881
        scheduler.set_timesteps(num_inference_steps)
882
        generator = torch.manual_seed(0)
Nathan Lambert's avatar
Nathan Lambert committed
883
884
885
886

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

887
            for _ in range(scheduler.config.correct_steps):
Nathan Lambert's avatar
Nathan Lambert committed
888
                with torch.no_grad():
889
                    model_output = model(sample, sigma_t)
890
                sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
891
892

            with torch.no_grad():
893
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
894

895
            output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
896
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
897

898
899
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
900

901
902
        assert np.isclose(result_sum.item(), 14372758528.0)
        assert np.isclose(result_mean.item(), 18714530.0)
Patrick von Platen's avatar
Patrick von Platen committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

921
922
            output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
923
924
925

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005


class LMSDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (LMSDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "trained_betas": None,
            "tensor_format": "pt",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [0, 500, 800]:
            self.check_over_forward(time_step=t)

    def test_pytorch_equal_numpy(self):
        for scheduler_class in self.scheduler_classes:
            sample_pt = self.dummy_sample
            residual_pt = 0.1 * sample_pt

            sample = sample_pt.numpy()
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler_config["tensor_format"] = "np"
            scheduler = scheduler_class(**scheduler_config)

            scheduler_config["tensor_format"] = "pt"
            scheduler_pt = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(self.num_inference_steps)
            scheduler_pt.set_timesteps(self.num_inference_steps)

            output = scheduler.step(residual, 1, sample).prev_sample
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt).prev_sample
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.sigmas[0]

        for i, t in enumerate(scheduler.timesteps):
            sample = sample / ((scheduler.sigmas[i] ** 2 + 1) ** 0.5)

            model_output = model(sample, t)

            output = scheduler.step(model_output, i, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 1006.388) < 1e-2
        assert abs(result_mean.item() - 1.31) < 1e-3