modeling_utils.py 46.9 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from collections import OrderedDict
22
from functools import partial
23
from typing import Any, Callable, List, Optional, Tuple, Union
24

25
import safetensors
26
import torch
27
from huggingface_hub import create_repo
28
from huggingface_hub.utils import validate_hf_hub_args
29
from torch import Tensor, nn
30

31
32
from .. import __version__
from ..utils import (
33
    CONFIG_NAME,
34
    FLAX_WEIGHTS_NAME,
35
    SAFETENSORS_WEIGHTS_NAME,
36
    WEIGHTS_NAME,
37
38
    _add_variant,
    _get_model_file,
39
    deprecate,
40
41
42
43
    is_accelerate_available,
    is_torch_version,
    logging,
)
44
from ..utils.hub_utils import PushToHubMixin
45
46
47
48
49


logger = logging.get_logger(__name__)


50
51
52
53
54
55
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


56
57
58
59
60
61
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


62
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
63
    try:
Patrick von Platen's avatar
Patrick von Platen committed
64
65
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
66
67
68
69
70
71
72
73
74
75
76
77
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


78
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
79
    try:
80
81
82
83
84
85
86
87
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

88
89
90
91
92
93
94
95
96
97
98
99
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


100
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
101
    """
102
    Reads a checkpoint file, returning properly formatted errors if they arise.
103
104
    """
    try:
105
        if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
106
107
108
            return torch.load(checkpoint_file, map_location="cpu")
        else:
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
125
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
126
127
128
129
130
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


131
132
133
134
135
136
137
def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
) -> List[str]:
138
139
140
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

141
142
    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


163
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
164
165
166
167
168
169
170
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
171
    def load(module: torch.nn.Module, prefix: str = ""):
172
173
174
175
176
177
178
179
180
181
182
183
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


184
class ModelMixin(torch.nn.Module, PushToHubMixin):
185
186
187
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
188
189
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
190

Steven Liu's avatar
Steven Liu committed
191
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
192
    """
193

194
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
195
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
196
    _supports_gradient_checkpointing = False
197
    _keys_to_ignore_on_load_unexpected = None
198

199
    def __init__(self):
200
201
        super().__init__()

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

220
221
222
223
224
225
226
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

227
    def enable_gradient_checkpointing(self) -> None:
228
        """
Steven Liu's avatar
Steven Liu committed
229
230
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
231
232
233
234
235
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

236
    def disable_gradient_checkpointing(self) -> None:
237
        """
Steven Liu's avatar
Steven Liu committed
238
239
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
240
241
242
243
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

244
245
246
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
247
248
249
250
251
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
252
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
253
254
255
256
257
258
259
260

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

261
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
262
        r"""
Steven Liu's avatar
Steven Liu committed
263
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
264

Steven Liu's avatar
Steven Liu committed
265
266
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
267

Steven Liu's avatar
Steven Liu committed
268
269
270
271
272
273
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
294
        """
295
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
296

297
    def disable_xformers_memory_efficient_attention(self) -> None:
298
        r"""
Steven Liu's avatar
Steven Liu committed
299
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
300
301
302
        """
        self.set_use_memory_efficient_attention_xformers(False)

303
304
305
306
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
307
        save_function: Optional[Callable] = None,
308
        safe_serialization: bool = True,
309
        variant: Optional[str] = None,
310
311
        push_to_hub: bool = False,
        **kwargs,
312
313
    ):
        """
Steven Liu's avatar
Steven Liu committed
314
315
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
316
317
318

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
319
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
320
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
321
322
323
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
324
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
325
326
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
327
                `DIFFUSERS_SAVE_MODE`.
328
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
329
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
330
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
331
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
332
333
334
335
336
337
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
338
339
340
341
342
343
344
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

345
346
347
348
349
350
351
352
353
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
354
355
356
357
358
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
359
            model_to_save.save_config(save_directory)
360
361
362
363

        # Save the model
        state_dict = model_to_save.state_dict()

364
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
365
        weights_name = _add_variant(weights_name, variant)
366

367
        # Save the model
368
369
370
371
372
373
        if safe_serialization:
            safetensors.torch.save_file(
                state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
            )
        else:
            torch.save(state_dict, os.path.join(save_directory, weights_name))
374

375
        logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
376

377
378
379
380
381
382
383
384
385
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

386
    @classmethod
387
    @validate_hf_hub_args
388
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
389
        r"""
Steven Liu's avatar
Steven Liu committed
390
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
391

Steven Liu's avatar
Steven Liu committed
392
393
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
394
395
396
397
398

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
399
400
401
402
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
403
404

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
405
406
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
407
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
408
409
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
410
411
412
413
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
414
415
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
416
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
417
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
418
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
419
            output_loading_info (`bool`, *optional*, defaults to `False`):
420
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
421
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
422
423
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
424
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
425
426
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
427
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
428
429
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
430
431
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
432
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
433
                The subfolder location of a model file within a larger model repository on the Hub or locally.
434
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
435
436
437
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
438
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
439
440
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
441
442
                same device.

Steven Liu's avatar
Steven Liu committed
443
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
444
445
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
446
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
447
448
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
449
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
450
                The path to offload weights if `device_map` contains the value `"disk"`.
451
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
452
453
454
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
455
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
456
457
458
459
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
460
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
461
462
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
463
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
464
465
466
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
467
468
469

        <Tip>

Steven Liu's avatar
Steven Liu committed
470
471
472
473
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
474
475
476

        </Tip>

Steven Liu's avatar
Steven Liu committed
477
        Example:
478

Steven Liu's avatar
Steven Liu committed
479
480
        ```py
        from diffusers import UNet2DConditionModel
481

Steven Liu's avatar
Steven Liu committed
482
483
484
485
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
486

Steven Liu's avatar
Steven Liu committed
487
488
489
490
491
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
492
        """
493
        cache_dir = kwargs.pop("cache_dir", None)
494
495
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
496
        from_flax = kwargs.pop("from_flax", False)
497
498
499
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
500
501
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
502
        revision = kwargs.pop("revision", None)
503
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
504
        subfolder = kwargs.pop("subfolder", None)
505
        device_map = kwargs.pop("device_map", None)
506
507
508
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
509
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
510
        variant = kwargs.pop("variant", None)
511
512
513
514
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
515
            use_safetensors = True
516
            allow_pickle = True
517

518
519
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
520
            logger.warning(
521
522
523
524
525
526
527
528
529
530
531
532
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

533
534
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
535
536
537
538
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
539

540
541
542
543
544
545
546
547
548
549
550
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
551

552
553
554
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

555
556
557
558
559
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
560

561
562
563
564
565
566
567
568
569
570
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
571
            token=token,
572
573
574
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
575
576
577
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
578
579
580
581
582
            user_agent=user_agent,
            **kwargs,
        )

        # load model
583
        model_file = None
584
        if from_flax:
585
            model_file = _get_model_file(
586
                pretrained_model_name_or_path,
587
                weights_name=FLAX_WEIGHTS_NAME,
588
589
590
591
592
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
593
                token=token,
594
595
596
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
597
                commit_hash=commit_hash,
598
599
            )
            model = cls.from_config(config, **unused_kwargs)
600

601
602
603
604
605
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
606
            if use_safetensors:
607
                try:
608
                    model_file = _get_model_file(
609
                        pretrained_model_name_or_path,
610
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
611
612
613
614
615
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
616
                        token=token,
617
618
619
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
620
                        commit_hash=commit_hash,
621
                    )
622
623
624
                except IOError as e:
                    if not allow_pickle:
                        raise e
625
626
                    pass
            if model_file is None:
627
                model_file = _get_model_file(
628
                    pretrained_model_name_or_path,
629
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
630
631
632
633
634
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
635
                    token=token,
636
637
638
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
639
                    commit_hash=commit_hash,
640
641
642
643
644
645
646
647
648
649
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
650
                    state_dict = load_state_dict(model_file, variant=variant)
651
                    model._convert_deprecated_attention_blocks(state_dict)
652
                    # move the params from meta device to cpu
653
654
655
656
657
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
658
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
659
660
                            " those weights or else make sure your checkpoint file is correct."
                        )
661

662
663
664
665
666
667
668
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
669
670
671
672
673
674
675
676
677
678

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

679
680
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
681
                    # by default the device_map is None and the weights are loaded on the CPU
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
723
724
725
726
727
728
729
730

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
731
                model = cls.from_config(config, **unused_kwargs)
732

733
                state_dict = load_state_dict(model_file, variant=variant)
734
                model._convert_deprecated_attention_blocks(state_dict)
735

736
737
738
739
740
741
742
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
743

744
745
746
747
748
749
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
750
751
752
753
754
755
756
757
758
759
760
761
762

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
763
764
765
766
767
768
769
770
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
771
        state_dict: OrderedDict,
772
        resolved_archive_file,
773
774
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
775
776
777
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
778
        loaded_keys = list(state_dict.keys())
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
868
869
870
871

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
872
    def device(self) -> torch.device:
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
888
        Get number of (trainable or non-embedding) parameters in the module.
889
890
891

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
892
                Whether or not to return only the number of trainable parameters.
893
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
894
                Whether or not to return only the number of non-embedding parameters.
895
896
897

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
898
899
900
901
902
903
904
905
906
907
908

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
923

924
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
967

968
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

995
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
996
997
        deprecated_attention_block_modules = []

998
        def recursive_find_attn_block(module) -> None:
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn