modeling_utils.py 47.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from collections import OrderedDict
22
from functools import partial
23
from pathlib import Path
24
from typing import Any, Callable, List, Optional, Tuple, Union
25

26
import safetensors
27
import torch
28
from huggingface_hub import create_repo
29
from huggingface_hub.utils import validate_hf_hub_args
30
from torch import Tensor, nn
31

32
33
from .. import __version__
from ..utils import (
34
    CONFIG_NAME,
35
    FLAX_WEIGHTS_NAME,
36
    SAFETENSORS_FILE_EXTENSION,
37
    SAFETENSORS_WEIGHTS_NAME,
38
    WEIGHTS_NAME,
39
40
    _add_variant,
    _get_model_file,
41
    deprecate,
42
43
44
45
    is_accelerate_available,
    is_torch_version,
    logging,
)
46
from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card
47
48
49
50
51


logger = logging.get_logger(__name__)


52
53
54
55
56
57
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


58
59
60
61
62
63
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


64
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
65
    try:
Patrick von Platen's avatar
Patrick von Platen committed
66
67
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
68
69
70
71
72
73
74
75
76
77
78
79
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


80
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
81
    try:
82
83
84
85
86
87
88
89
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

90
91
92
93
94
95
96
97
98
99
100
101
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


102
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
103
    """
104
    Reads a checkpoint file, returning properly formatted errors if they arise.
105
106
    """
    try:
107
108
        file_extension = os.path.basename(checkpoint_file).split(".")[-1]
        if file_extension == SAFETENSORS_FILE_EXTENSION:
109
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
110
111
        else:
            return torch.load(checkpoint_file, map_location="cpu")
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
Sayak Paul's avatar
Sayak Paul committed
128
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
129
130
131
            )


132
133
134
135
136
137
138
def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
) -> List[str]:
139
140
141
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

142
143
    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


164
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
165
166
167
168
169
170
171
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
172
    def load(module: torch.nn.Module, prefix: str = ""):
173
174
175
176
177
178
179
180
181
182
183
184
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


185
class ModelMixin(torch.nn.Module, PushToHubMixin):
186
187
188
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
189
190
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
191

Steven Liu's avatar
Steven Liu committed
192
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
193
    """
194

195
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
196
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
197
    _supports_gradient_checkpointing = False
198
    _keys_to_ignore_on_load_unexpected = None
199

200
    def __init__(self):
201
202
        super().__init__()

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

221
222
223
224
225
226
227
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

228
    def enable_gradient_checkpointing(self) -> None:
229
        """
Steven Liu's avatar
Steven Liu committed
230
231
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
232
233
234
235
236
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

237
    def disable_gradient_checkpointing(self) -> None:
238
        """
Steven Liu's avatar
Steven Liu committed
239
240
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
241
242
243
244
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

245
246
247
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
248
249
250
251
252
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
253
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
254
255
256
257
258
259
260
261

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

262
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
263
        r"""
Steven Liu's avatar
Steven Liu committed
264
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
265

Steven Liu's avatar
Steven Liu committed
266
267
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
268

Steven Liu's avatar
Steven Liu committed
269
270
271
272
273
274
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
295
        """
296
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
297

298
    def disable_xformers_memory_efficient_attention(self) -> None:
299
        r"""
Steven Liu's avatar
Steven Liu committed
300
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
301
302
303
        """
        self.set_use_memory_efficient_attention_xformers(False)

304
305
306
307
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
308
        save_function: Optional[Callable] = None,
309
        safe_serialization: bool = True,
310
        variant: Optional[str] = None,
311
312
        push_to_hub: bool = False,
        **kwargs,
313
314
    ):
        """
Steven Liu's avatar
Steven Liu committed
315
316
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
317
318
319

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
320
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
321
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
322
323
324
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
325
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
326
327
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
328
                `DIFFUSERS_SAVE_MODE`.
329
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
330
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
331
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
332
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
333
334
335
336
337
338
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
339
340
341
342
343
344
345
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

346
347
348
349
350
351
352
353
354
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
355
356
357
358
359
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
360
            model_to_save.save_config(save_directory)
361
362
363
364

        # Save the model
        state_dict = model_to_save.state_dict()

365
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
366
        weights_name = _add_variant(weights_name, variant)
367

368
        # Save the model
369
370
        if safe_serialization:
            safetensors.torch.save_file(
371
                state_dict, Path(save_directory, weights_name).as_posix(), metadata={"format": "pt"}
372
373
            )
        else:
374
            torch.save(state_dict, Path(save_directory, weights_name).as_posix())
375

376
        logger.info(f"Model weights saved in {Path(save_directory, weights_name).as_posix()}")
377

378
        if push_to_hub:
379
380
381
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
382
            model_card.save(Path(save_directory, "README.md").as_posix())
383

384
385
386
387
388
389
390
391
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

392
    @classmethod
393
    @validate_hf_hub_args
394
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
395
        r"""
Steven Liu's avatar
Steven Liu committed
396
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
397

Steven Liu's avatar
Steven Liu committed
398
399
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
400
401
402
403
404

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
405
406
407
408
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
409
410

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
411
412
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
413
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
414
415
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
416
417
418
419
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
420
421
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
422
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
423
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
424
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
425
            output_loading_info (`bool`, *optional*, defaults to `False`):
426
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
427
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
428
429
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
430
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
431
432
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
433
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
434
435
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
436
437
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
438
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
439
                The subfolder location of a model file within a larger model repository on the Hub or locally.
440
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
441
442
443
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
444
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
445
446
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
447
448
                same device.

Steven Liu's avatar
Steven Liu committed
449
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
450
451
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
452
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
453
454
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
455
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
456
                The path to offload weights if `device_map` contains the value `"disk"`.
457
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
458
459
460
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
461
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
462
463
464
465
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
466
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
467
468
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
469
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
470
471
472
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
473
474
475

        <Tip>

Steven Liu's avatar
Steven Liu committed
476
477
478
479
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
480
481
482

        </Tip>

Steven Liu's avatar
Steven Liu committed
483
        Example:
484

Steven Liu's avatar
Steven Liu committed
485
486
        ```py
        from diffusers import UNet2DConditionModel
487

Steven Liu's avatar
Steven Liu committed
488
489
490
491
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
492

Steven Liu's avatar
Steven Liu committed
493
494
495
496
497
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
498
        """
499
        cache_dir = kwargs.pop("cache_dir", None)
500
501
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
502
        from_flax = kwargs.pop("from_flax", False)
503
504
505
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
506
507
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
508
        revision = kwargs.pop("revision", None)
509
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
510
        subfolder = kwargs.pop("subfolder", None)
511
        device_map = kwargs.pop("device_map", None)
512
513
514
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
515
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
516
        variant = kwargs.pop("variant", None)
517
518
519
520
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
521
            use_safetensors = True
522
            allow_pickle = True
523

524
525
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
526
            logger.warning(
527
528
529
530
531
532
533
534
535
536
537
538
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

539
540
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
541
542
543
544
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
545

546
547
548
549
550
551
552
553
554
555
556
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
557

558
559
560
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

561
562
563
564
565
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
566

567
568
569
570
571
572
573
574
575
576
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
577
            token=token,
578
579
580
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
581
582
583
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
584
585
586
587
588
            user_agent=user_agent,
            **kwargs,
        )

        # load model
589
        model_file = None
590
        if from_flax:
591
            model_file = _get_model_file(
592
                pretrained_model_name_or_path,
593
                weights_name=FLAX_WEIGHTS_NAME,
594
595
596
597
598
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
599
                token=token,
600
601
602
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
603
                commit_hash=commit_hash,
604
605
            )
            model = cls.from_config(config, **unused_kwargs)
606

607
608
609
610
611
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
612
            if use_safetensors:
613
                try:
614
                    model_file = _get_model_file(
615
                        pretrained_model_name_or_path,
616
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
617
618
619
620
621
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
622
                        token=token,
623
624
625
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
626
                        commit_hash=commit_hash,
627
                    )
628
629
630
                except IOError as e:
                    if not allow_pickle:
                        raise e
631
632
                    pass
            if model_file is None:
633
                model_file = _get_model_file(
634
                    pretrained_model_name_or_path,
635
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
636
637
638
639
640
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
641
                    token=token,
642
643
644
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
645
                    commit_hash=commit_hash,
646
647
648
649
650
651
652
653
654
655
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
656
                    state_dict = load_state_dict(model_file, variant=variant)
657
                    model._convert_deprecated_attention_blocks(state_dict)
658
                    # move the params from meta device to cpu
659
660
661
662
663
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
664
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
665
666
                            " those weights or else make sure your checkpoint file is correct."
                        )
667

668
669
670
671
672
673
674
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
675
676
677
678
679
680

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
681
                        logger.warning(
682
683
684
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

685
686
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
687
                    # by default the device_map is None and the weights are loaded on the CPU
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
709
                            logger.warning(
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
729
730
731
732
733
734
735
736

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
737
                model = cls.from_config(config, **unused_kwargs)
738

739
                state_dict = load_state_dict(model_file, variant=variant)
740
                model._convert_deprecated_attention_blocks(state_dict)
741

742
743
744
745
746
747
748
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
749

750
751
752
753
754
755
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
756
757
758
759
760
761
762
763
764
765
766
767
768

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
769
770
771
772
773
774
775
776
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
777
        state_dict: OrderedDict,
778
        resolved_archive_file,
779
780
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
781
782
783
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
784
        loaded_keys = list(state_dict.keys())
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
874
875
876
877

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
878
    def device(self) -> torch.device:
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
894
        Get number of (trainable or non-embedding) parameters in the module.
895
896
897

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
898
                Whether or not to return only the number of trainable parameters.
899
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
900
                Whether or not to return only the number of non-embedding parameters.
901
902
903

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
904
905
906
907
908
909
910
911
912
913
914

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
929

930
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
973

974
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1001
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1002
1003
        deprecated_attention_block_modules = []

1004
        def recursive_find_attn_block(module) -> None:
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn