train_dreambooth.py 57.8 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
15
# limitations under the License.
16

17
import argparse
18
import copy
19
import gc
20
import importlib
21
import itertools
Suraj Patil's avatar
Suraj Patil committed
22
import logging
23
24
import math
import os
25
import shutil
26
import warnings
27
28
from pathlib import Path

29
import numpy as np
30
31
32
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
33
import transformers
34
35
from accelerate import Accelerator
from accelerate.logging import get_logger
36
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
37
from huggingface_hub import create_repo, model_info, upload_folder
38
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
48
49
50
51
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
52
    StableDiffusionPipeline,
53
54
    UNet2DConditionModel,
)
55
from diffusers.optimization import get_scheduler
56
from diffusers.training_utils import compute_snr
57
from diffusers.utils import check_min_version, is_wandb_available
58
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
59
from diffusers.utils.import_utils import is_xformers_available
60
from diffusers.utils.torch_utils import is_compiled_module
61

62

63
64
65
if is_wandb_available():
    import wandb

66
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
67
check_min_version("0.35.0.dev0")
68

69
70
71
logger = get_logger(__name__)


72
73
def save_model_card(
    repo_id: str,
74
75
    images: list = None,
    base_model: str = None,
76
    train_text_encoder=False,
77
78
    prompt: str = None,
    repo_folder: str = None,
79
80
    pipeline: DiffusionPipeline = None,
):
81
    img_str = ""
82
83
84
85
86
87
    if images is not None:
        for i, image in enumerate(images):
            image.save(os.path.join(repo_folder, f"image_{i}.png"))
            img_str += f"![img_{i}](./image_{i}.png)\n"

    model_description = f"""
88
89
90
91
92
93
94
95
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
96
97
98
99
100
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=base_model,
101
        prompt=prompt,
102
103
104
105
        model_description=model_description,
        inference=True,
    )

106
    tags = ["text-to-image", "dreambooth", "diffusers-training"]
107
108
109
110
111
112
113
    if isinstance(pipeline, StableDiffusionPipeline):
        tags.extend(["stable-diffusion", "stable-diffusion-diffusers"])
    else:
        tags.extend(["if", "if-diffusers"])
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
114
115


116
def log_validation(
117
118
119
120
121
122
123
124
125
126
    text_encoder,
    tokenizer,
    unet,
    vae,
    args,
    accelerator,
    weight_dtype,
    global_step,
    prompt_embeds,
    negative_prompt_embeds,
127
):
128
129
130
131
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
132
133
134
135
136
137

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

138
139
140
141
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
142
        text_encoder=text_encoder,
143
        unet=unet,
144
        revision=args.revision,
145
        variant=args.variant,
146
        torch_dtype=weight_dtype,
147
        **pipeline_args,
148
    )
149
150
151
152
153
154
155
156
157
158
159
160

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

161
162
163
    module = importlib.import_module("diffusers")
    scheduler_class = getattr(module, args.validation_scheduler)
    pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args)
164
165
166
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

167
168
169
170
171
172
173
174
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

175
176
177
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
178
179
180
181
182
183
184
185
186
187
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
188
189
190
191

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
192
            tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
193
194
195
196
197
198
199
200
201
202
203
204
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

205
206
    return images

207

208
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
209
210
211
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
212
        revision=revision,
213
214
215
216
217
218
219
220
221
222
223
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
224
225
226
227
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
228
229
230
231
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
232
def parse_args(input_args=None):
233
234
235
236
237
238
239
240
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
241
242
243
244
245
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
246
247
248
249
250
251
252
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
253
    )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
278
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
279
        help="The prompt with identifier specifying the instance",
280
281
282
283
284
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
285
        help="The prompt to specify images in the same class as provided instance images.",
286
287
288
289
290
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
291
        help="Flag to add prior preservation loss.",
292
293
294
295
296
297
298
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
299
300
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
301
302
303
304
305
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
306
        default="dreambooth-model",
307
308
309
310
311
312
313
314
315
316
317
318
319
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
320
321
322
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
323
324
325
326
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
327
    )
328
329
330
331
332
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
333
334
335
336
337
338
339
340
341
342
343
344
345
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
346
347
348
349
350
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
351
352
353
354
355
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
356
357
        ),
    )
358
    parser.add_argument(
359
        "--checkpoints_total_limit",
360
361
362
363
364
365
366
367
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
368
369
370
371
372
373
374
375
376
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
412
413
414
415
416
417
418
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
419
420
421
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
422
423
424
425
426
427
428
429
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
452
453
454
455
456
457
458
459
460
461
462
463
464
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
465
466
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
467
468
        ),
    )
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
491
492
493
    parser.add_argument(
        "--mixed_precision",
        type=str,
494
        default=None,
495
496
        choices=["no", "fp16", "bf16"],
        help=(
497
498
499
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
500
501
        ),
    )
502
503
504
505
506
507
508
509
510
511
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
512
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
513
514
515
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
516
517
518
519
520
521
522
523
524
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
525

526
527
528
529
530
531
532
533
534
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
535
536
537
538
539
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
Quentin Gallouédec's avatar
Quentin Gallouédec committed
540
        "More details here: https://huggingface.co/papers/2303.09556.",
541
    )
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
563
564
565
566
567
568
569
570
571
572
573
574
575
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
576
577
578
579
580
581
582
    parser.add_argument(
        "--validation_scheduler",
        type=str,
        default="DPMSolverMultistepScheduler",
        choices=["DPMSolverMultistepScheduler", "DDPMScheduler"],
        help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.",
    )
583

584
585
586
587
588
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

589
590
591
592
593
594
595
596
597
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
598
    else:
599
        # logger is not available yet
600
        if args.class_data_dir is not None:
601
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
602
        if args.class_prompt is not None:
603
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
604

605
606
607
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

608
609
610
611
612
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
613
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
614
615
616
617
618
619
620
621
622
623
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
624
        class_num=None,
625
626
        size=512,
        center_crop=False,
627
        encoder_hidden_states=None,
628
        class_prompt_encoder_hidden_states=None,
629
        tokenizer_max_length=None,
630
631
632
633
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
634
        self.encoder_hidden_states = encoder_hidden_states
635
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
636
        self.tokenizer_max_length = tokenizer_max_length
637
638
639

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
640
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
641
642
643
644
645
646
647
648
649

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
650
            self.class_images_path = list(self.class_data_root.iterdir())
651
652
653
654
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
675
676
        instance_image = exif_transpose(instance_image)

677
678
679
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
680
681
682
683
684
685
686
687
688

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
689
690
691

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
692
693
            class_image = exif_transpose(class_image)

694
695
696
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
697

698
699
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
700
701
702
703
704
705
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
706
707
708
709

        return example


710
def collate_fn(examples, with_prior_preservation=False):
711
712
    has_attention_mask = "instance_attention_mask" in examples[0]

713
714
715
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

716
717
718
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

719
720
721
722
723
724
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

725
726
727
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

728
729
730
731
732
733
734
735
736
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
737
738

    if has_attention_mask:
739
        attention_mask = torch.cat(attention_mask, dim=0)
740
741
        batch["attention_mask"] = attention_mask

742
743
744
    return batch


745
class PromptDataset(Dataset):
746
    """A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


762
def model_has_vae(args):
763
    config_file_name = Path("vae", AutoencoderKL.config_name).as_posix()
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
800
        return_dict=False,
801
802
803
804
805
806
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


807
def main(args):
808
809
810
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
811
            " Please use `hf auth login` to authenticate with the Hub."
812
813
        )

814
815
    logging_dir = Path(args.output_dir, args.logging_dir)

816
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
817

818
819
820
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
821
        log_with=args.report_to,
822
        project_config=accelerator_project_config,
823
824
    )

825
826
827
828
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

829
830
831
832
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

833
834
835
836
837
838
839
840
841
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
857
858
859
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
860
    # Generate class images if prior preservation is enabled.
861
862
863
864
865
866
867
868
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
869
870
871
872
873
874
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
875
            pipeline = DiffusionPipeline.from_pretrained(
876
877
878
879
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
880
                variant=args.variant,
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
896
                images = pipeline(example["prompt"]).images
897
898

                for i, image in enumerate(images):
899
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
900
901
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
902
903
904
905
906
907
908

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
909
        if args.output_dir is not None:
910
911
            os.makedirs(args.output_dir, exist_ok=True)

912
913
914
915
916
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

917
918
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
919
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
920
    elif args.pretrained_model_name_or_path:
921
        tokenizer = AutoTokenizer.from_pretrained(
922
923
924
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
925
            use_fast=False,
926
        )
927

928
    # import correct text encoder class
929
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
930

Suraj Patil's avatar
Suraj Patil committed
931
932
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
933
    text_encoder = text_encoder_cls.from_pretrained(
934
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
935
    )
936
937
938

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
939
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
940
941
942
943
        )
    else:
        vae = None

944
    unet = UNet2DConditionModel.from_pretrained(
945
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
946
    )
947

948
949
950
951
952
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

953
954
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
955
956
        if accelerator.is_main_process:
            for model in models:
957
                sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder"
958
                model.save_pretrained(os.path.join(output_dir, sub_dir))
959

960
961
                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()
962
963
964
965
966
967

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

968
            if isinstance(model, type(unwrap_model(text_encoder))):
969
970
971
972
973
974
975
976
977
978
979
980
981
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
982

983
984
985
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
986
987
988
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

989
990
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
991
992
993
994
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
995
                logger.warning(
996
997
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
998
            unet.enable_xformers_memory_efficient_attention()
999
1000
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
1001

1002
1003
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
1004
1005
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
1006

1007
1008
1009
1010
1011
1012
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

1013
1014
    if unwrap_model(unet).dtype != torch.float32:
        raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}")
1015

1016
    if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32:
1017
        raise ValueError(
1018
            f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}. {low_precision_error_string}"
1019
1020
        )

Suraj Patil's avatar
Suraj Patil committed
1021
1022
1023
1024
1025
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
1044
    # Optimizer creation
1045
1046
1047
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1048
    optimizer = optimizer_class(
1049
        params_to_optimize,
1050
1051
1052
1053
1054
1055
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1078
1079
        if args.class_prompt is not None:
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
1080
        else:
1081
            pre_computed_class_prompt_encoder_hidden_states = None
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1092
        pre_computed_class_prompt_encoder_hidden_states = None
1093

Suraj Patil's avatar
Suraj Patil committed
1094
    # Dataset and DataLoaders creation:
1095
1096
1097
1098
1099
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1100
        class_num=args.num_class_images,
1101
1102
1103
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1104
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1105
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
1106
        tokenizer_max_length=args.tokenizer_max_length,
1107
1108
1109
    )

    train_dataloader = torch.utils.data.DataLoader(
1110
1111
1112
1113
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1114
        num_workers=args.dataloader_num_workers,
1115
1116
1117
    )

    # Scheduler and math around the number of training steps.
1118
1119
    # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
    num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
1120
    if args.max_train_steps is None:
1121
1122
1123
1124
1125
1126
1127
        len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
        num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
        num_training_steps_for_scheduler = (
            args.num_train_epochs * accelerator.num_processes * num_update_steps_per_epoch
        )
    else:
        num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
1128
1129
1130
1131

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1132
1133
        num_warmup_steps=num_warmup_steps_for_scheduler,
        num_training_steps=num_training_steps_for_scheduler,
1134
1135
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1136
1137
    )

Suraj Patil's avatar
Suraj Patil committed
1138
    # Prepare everything with our `accelerator`.
1139
1140
1141
1142
1143
1144
1145
1146
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1147

1148
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
1149
    # as these weights are only used for inference, keeping weights in full precision is not required.
1150
    weight_dtype = torch.float32
1151
    if accelerator.mixed_precision == "fp16":
1152
        weight_dtype = torch.float16
1153
    elif accelerator.mixed_precision == "bf16":
1154
1155
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1156
    # Move vae and text_encoder to device and cast to weight_dtype
1157
1158
1159
1160
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1161
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1162
1163
1164

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
1165
    if args.max_train_steps is None:
1166
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
1167
1168
1169
1170
1171
1172
        if num_training_steps_for_scheduler != args.max_train_steps:
            logger.warning(
                f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
                f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
                f"This inconsistency may result in the learning rate scheduler not functioning properly."
            )
1173
1174
1175
1176
1177
1178
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1179
        tracker_config = vars(copy.deepcopy(args))
1180
1181
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth", config=tracker_config)
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1194
1195
1196
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1197
    # Potentially load in the weights and states from a previous save
1198
1199
1200
1201
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
1202
            # Get the most recent checkpoint
1203
1204
1205
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1206
1207
1208
1209
1210
1211
1212
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1213
            initial_global_step = 0
1214
1215
1216
1217
1218
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1219
            initial_global_step = global_step
1220
            first_epoch = global_step // num_update_steps_per_epoch
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1231

1232
    for epoch in range(first_epoch, args.num_train_epochs):
1233
        unet.train()
1234
1235
        if args.train_text_encoder:
            text_encoder.train()
1236
1237
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1238
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1239

1240
1241
1242
1243
1244
1245
1246
1247
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1248
                if args.offset_noise:
1249
1250
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1251
1252
                    )
                else:
1253
                    noise = torch.randn_like(model_input)
1254
                bsz, channels, height, width = model_input.shape
1255
                # Sample a random timestep for each image
1256
1257
1258
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1259
1260
                timesteps = timesteps.long()

1261
                # Add noise to the model input according to the noise magnitude at each timestep
1262
                # (this is the forward diffusion process)
1263
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1264
1265

                # Get the text embedding for conditioning
1266
1267
1268
1269
1270
1271
1272
1273
1274
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1275

1276
                if unwrap_model(unet).config.in_channels == channels * 2:
1277
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1278
1279
1280
1281
1282
1283

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1284
                # Predict the noise residual
1285
                model_pred = unet(
1286
1287
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False
                )[0]
1288
1289
1290

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1291
1292
1293
1294
1295

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1296
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1297
1298
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1299
1300

                if args.with_prior_preservation:
1301
1302
1303
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1304
1305
                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1306

1307
1308
                # Compute instance loss
                if args.snr_gamma is None:
1309
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1310
                else:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1311
                    # Compute loss-weights as per Section 3.4 of https://huggingface.co/papers/2303.09556.
1312
1313
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
1314
                    snr = compute_snr(noise_scheduler, timesteps)
1315

1316
1317
                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
1318
                        divisor = snr + 1
1319
                    else:
1320
1321
1322
1323
1324
1325
                        divisor = snr

                    mse_loss_weights = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / divisor
                    )

1326
1327
1328
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()
1329

1330
                if args.with_prior_preservation:
1331
1332
1333
1334
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
1335
                if accelerator.sync_gradients:
1336
1337
1338
1339
1340
1341
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1342
1343
                optimizer.step()
                lr_scheduler.step()
1344
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1345
1346
1347
1348
1349
1350

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1351
1352
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1373
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1374
1375
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1376

1377
1378
                    images = []

1379
                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1380
                        images = log_validation(
1381
                            unwrap_model(text_encoder) if text_encoder is not None else text_encoder,
1382
                            tokenizer,
1383
                            unwrap_model(unet),
1384
1385
1386
1387
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
1388
                            global_step,
1389
1390
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1391
                        )
1392

1393
1394
1395
1396
1397
1398
1399
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1400
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1401
    accelerator.wait_for_everyone()
1402
    if accelerator.is_main_process:
1403
1404
1405
        pipeline_args = {}

        if text_encoder is not None:
1406
            pipeline_args["text_encoder"] = unwrap_model(text_encoder)
1407
1408
1409
1410

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1411
        pipeline = DiffusionPipeline.from_pretrained(
1412
            args.pretrained_model_name_or_path,
1413
            unet=unwrap_model(unet),
1414
            revision=args.revision,
1415
            variant=args.variant,
1416
            **pipeline_args,
1417
        )
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1432
1433
1434
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1435
1436
1437
1438
1439
1440
1441
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1442
                pipeline=pipeline,
1443
            )
1444
1445
1446
1447
1448
1449
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1450
1451
1452
1453
1454

    accelerator.end_training()


if __name__ == "__main__":
1455
1456
    args = parse_args()
    main(args)