train_dreambooth.py 54.8 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import copy
18
import gc
19
import hashlib
20
import importlib
21
import itertools
Suraj Patil's avatar
Suraj Patil committed
22
import logging
23
24
import math
import os
25
import shutil
26
import warnings
27
28
from pathlib import Path

29
import numpy as np
30
31
32
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
33
import transformers
34
35
from accelerate import Accelerator
from accelerate.logging import get_logger
36
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
46
from huggingface_hub import create_repo, model_info, upload_folder
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
51
    StableDiffusionPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.optimization import get_scheduler
55
from diffusers.utils import check_min_version, is_wandb_available
56
57
from diffusers.utils.import_utils import is_xformers_available

58

59
60
61
if is_wandb_available():
    import wandb

62
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
63
check_min_version("0.21.0.dev0")
64

65
66
67
logger = get_logger(__name__)


68
69
70
71
72
73
74
75
76
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
77
78
79
80
81
82
83
84
85
86
87
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
88
89
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


109
def log_validation(
110
111
112
113
114
115
116
117
118
119
    text_encoder,
    tokenizer,
    unet,
    vae,
    args,
    accelerator,
    weight_dtype,
    global_step,
    prompt_embeds,
    negative_prompt_embeds,
120
):
121
122
123
124
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
125
126
127
128
129
130

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

131
132
133
    if text_encoder is not None:
        text_encoder = accelerator.unwrap_model(text_encoder)

134
135
136
137
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
138
        text_encoder=text_encoder,
139
140
141
        unet=accelerator.unwrap_model(unet),
        revision=args.revision,
        torch_dtype=weight_dtype,
142
        **pipeline_args,
143
    )
144
145
146
147
148
149
150
151
152
153
154
155

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

156
157
158
    module = importlib.import_module("diffusers")
    scheduler_class = getattr(module, args.validation_scheduler)
    pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args)
159
160
161
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

162
163
164
165
166
167
168
169
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

170
171
172
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
173
174
175
176
177
178
179
180
181
182
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
183
184
185
186

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
187
            tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
188
189
190
191
192
193
194
195
196
197
198
199
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

200
201
    return images

202

203
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
204
205
206
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
207
        revision=revision,
208
209
210
211
212
213
214
215
216
217
218
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
219
220
221
222
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
223
224
225
226
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
227
def parse_args(input_args=None):
228
229
230
231
232
233
234
235
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
236
237
238
239
240
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
241
242
243
244
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
245
    )
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
270
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
271
        help="The prompt with identifier specifying the instance",
272
273
274
275
276
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
277
        help="The prompt to specify images in the same class as provided instance images.",
278
279
280
281
282
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
283
        help="Flag to add prior preservation loss.",
284
285
286
287
288
289
290
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
291
292
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
312
313
314
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
315
316
317
318
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
319
    )
320
321
322
323
324
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
325
326
327
328
329
330
331
332
333
334
335
336
337
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
338
339
340
341
342
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
343
344
345
346
347
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
348
349
        ),
    )
350
    parser.add_argument(
351
        "--checkpoints_total_limit",
352
353
354
355
356
357
358
359
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
360
361
362
363
364
365
366
367
368
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
404
405
406
407
408
409
410
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
411
412
413
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
414
415
416
417
418
419
420
421
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
444
445
446
447
448
449
450
451
452
453
454
455
456
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
457
458
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
459
460
        ),
    )
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
483
484
485
    parser.add_argument(
        "--mixed_precision",
        type=str,
486
        default=None,
487
488
        choices=["no", "fp16", "bf16"],
        help=(
489
490
491
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
492
493
        ),
    )
494
495
496
497
498
499
500
501
502
503
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
504
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
505
506
507
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
508
509
510
511
512
513
514
515
516
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
517

518
519
520
521
522
523
524
525
526
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
548
549
550
551
552
553
554
555
556
557
558
559
560
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
561
562
563
564
565
566
567
    parser.add_argument(
        "--validation_scheduler",
        type=str,
        default="DPMSolverMultistepScheduler",
        choices=["DPMSolverMultistepScheduler", "DDPMScheduler"],
        help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.",
    )
568

569
570
571
572
573
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

574
575
576
577
578
579
580
581
582
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
583
    else:
584
        # logger is not available yet
585
        if args.class_data_dir is not None:
586
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
587
        if args.class_prompt is not None:
588
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
589

590
591
592
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

593
594
595
596
597
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
598
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
599
600
601
602
603
604
605
606
607
608
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
609
        class_num=None,
610
611
        size=512,
        center_crop=False,
612
        encoder_hidden_states=None,
613
        class_prompt_encoder_hidden_states=None,
614
        tokenizer_max_length=None,
615
616
617
618
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
619
        self.encoder_hidden_states = encoder_hidden_states
620
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
621
        self.tokenizer_max_length = tokenizer_max_length
622
623
624

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
625
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
626
627
628
629
630
631
632
633
634

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
635
            self.class_images_path = list(self.class_data_root.iterdir())
636
637
638
639
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
660
661
        instance_image = exif_transpose(instance_image)

662
663
664
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
665
666
667
668
669
670
671
672
673

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
674
675
676

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
677
678
            class_image = exif_transpose(class_image)

679
680
681
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
682

683
684
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
685
686
687
688
689
690
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
691
692
693
694

        return example


695
def collate_fn(examples, with_prior_preservation=False):
696
697
    has_attention_mask = "instance_attention_mask" in examples[0]

698
699
700
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

701
702
703
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

704
705
706
707
708
709
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

710
711
712
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

713
714
715
716
717
718
719
720
721
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
722
723

    if has_attention_mask:
724
        attention_mask = torch.cat(attention_mask, dim=0)
725
726
        batch["attention_mask"] = attention_mask

727
728
729
    return batch


730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
def model_has_vae(args):
    config_file_name = os.path.join("vae", AutoencoderKL.config_name)
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


791
def main(args):
792
793
    logging_dir = Path(args.output_dir, args.logging_dir)

794
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
795

796
797
798
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
799
        log_with=args.report_to,
800
        project_config=accelerator_project_config,
801
802
    )

803
804
805
806
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

807
808
809
810
811
812
813
814
815
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
831
832
833
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
834
    # Generate class images if prior preservation is enabled.
835
836
837
838
839
840
841
842
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
843
844
845
846
847
848
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
849
            pipeline = DiffusionPipeline.from_pretrained(
850
851
852
853
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
869
                images = pipeline(example["prompt"]).images
870
871

                for i, image in enumerate(images):
872
873
874
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
875
876
877
878
879
880
881

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
882
        if args.output_dir is not None:
883
884
            os.makedirs(args.output_dir, exist_ok=True)

885
886
887
888
889
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

890
891
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
892
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
893
    elif args.pretrained_model_name_or_path:
894
        tokenizer = AutoTokenizer.from_pretrained(
895
896
897
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
898
            use_fast=False,
899
        )
900

901
    # import correct text encoder class
902
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
903

Suraj Patil's avatar
Suraj Patil committed
904
905
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
906
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
907
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
908
    )
909
910
911
912
913
914
915
916

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
    else:
        vae = None

917
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
918
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
919
    )
920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        for model in models:
            sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
            model.save_pretrained(os.path.join(output_dir, sub_dir))

            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

            if isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
949

950
951
952
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
953
954
955
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

956
957
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
958
959
960
961
962
963
964
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
965
            unet.enable_xformers_memory_efficient_attention()
966
967
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
968

969
970
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
971
972
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
973

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
991
992
993
994
995
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
1014
    # Optimizer creation
1015
1016
1017
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1018
    optimizer = optimizer_class(
1019
        params_to_optimize,
1020
1021
1022
1023
1024
1025
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1048
1049
        if args.class_prompt is not None:
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
1050
        else:
1051
            pre_computed_class_prompt_encoder_hidden_states = None
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1062
        pre_computed_class_prompt_encoder_hidden_states = None
1063

Suraj Patil's avatar
Suraj Patil committed
1064
    # Dataset and DataLoaders creation:
1065
1066
1067
1068
1069
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1070
        class_num=args.num_class_images,
1071
1072
1073
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1074
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1075
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
1076
        tokenizer_max_length=args.tokenizer_max_length,
1077
1078
1079
    )

    train_dataloader = torch.utils.data.DataLoader(
1080
1081
1082
1083
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1084
        num_workers=args.dataloader_num_workers,
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1097
1098
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1099
1100
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1101
1102
    )

Suraj Patil's avatar
Suraj Patil committed
1103
    # Prepare everything with our `accelerator`.
1104
1105
1106
1107
1108
1109
1110
1111
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1112

1113
1114
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
1115
    weight_dtype = torch.float32
1116
    if accelerator.mixed_precision == "fp16":
1117
        weight_dtype = torch.float16
1118
    elif accelerator.mixed_precision == "bf16":
1119
1120
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1121
    # Move vae and text_encoder to device and cast to weight_dtype
1122
1123
1124
1125
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1126
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1138
        tracker_config = vars(copy.deepcopy(args))
1139
1140
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth", config=tracker_config)
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1153
1154
1155
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1156
    # Potentially load in the weights and states from a previous save
1157
1158
1159
1160
1161
1162
1163
1164
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
1180

1181
    # Only show the progress bar once on each machine.
1182
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
1183
1184
    progress_bar.set_description("Steps")

1185
    for epoch in range(first_epoch, args.num_train_epochs):
1186
        unet.train()
1187
1188
        if args.train_text_encoder:
            text_encoder.train()
1189
        for step, batch in enumerate(train_dataloader):
1190
1191
1192
1193
1194
1195
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

1196
            with accelerator.accumulate(unet):
1197
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1198

1199
1200
1201
1202
1203
1204
1205
1206
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1207
                if args.offset_noise:
1208
1209
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1210
1211
                    )
                else:
1212
                    noise = torch.randn_like(model_input)
1213
                bsz, channels, height, width = model_input.shape
1214
                # Sample a random timestep for each image
1215
1216
1217
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1218
1219
                timesteps = timesteps.long()

1220
                # Add noise to the model input according to the noise magnitude at each timestep
1221
                # (this is the forward diffusion process)
1222
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1223
1224

                # Get the text embedding for conditioning
1225
1226
1227
1228
1229
1230
1231
1232
1233
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1234

1235
                if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
1236
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1237
1238
1239
1240
1241
1242

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1243
                # Predict the noise residual
1244
1245
1246
                model_pred = unet(
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
                ).sample
1247
1248
1249

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1250
1251
1252
1253
1254

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1255
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1256
1257
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1258
1259

                if args.with_prior_preservation:
1260
1261
1262
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1263
1264

                    # Compute instance loss
1265
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1266
1267

                    # Compute prior loss
1268
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1269
1270
1271
1272

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
1273
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1274
1275

                accelerator.backward(loss)
1276
                if accelerator.sync_gradients:
1277
1278
1279
1280
1281
1282
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1283
1284
                optimizer.step()
                lr_scheduler.step()
1285
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1286
1287
1288
1289
1290
1291

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1292
1293
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1314
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1315
1316
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1317

1318
1319
                    images = []

1320
                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1321
                        images = log_validation(
1322
1323
1324
1325
1326
1327
1328
                            text_encoder,
                            tokenizer,
                            unet,
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
1329
                            global_step,
1330
1331
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1332
                        )
1333

1334
1335
1336
1337
1338
1339
1340
1341
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1342
    accelerator.wait_for_everyone()
1343
    if accelerator.is_main_process:
1344
1345
1346
1347
1348
1349
1350
1351
        pipeline_args = {}

        if text_encoder is not None:
            pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1352
        pipeline = DiffusionPipeline.from_pretrained(
1353
1354
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
1355
            revision=args.revision,
1356
            **pipeline_args,
1357
        )
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1372
1373
1374
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1375
1376
1377
1378
1379
1380
1381
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1382
                pipeline=pipeline,
1383
            )
1384
1385
1386
1387
1388
1389
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1390
1391
1392
1393
1394

    accelerator.end_training()


if __name__ == "__main__":
1395
1396
    args = parse_args()
    main(args)