train_dreambooth.py 57.8 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import copy
18
import gc
19
import importlib
20
import itertools
Suraj Patil's avatar
Suraj Patil committed
21
import logging
22
23
import math
import os
24
import shutil
25
import warnings
26
27
from pathlib import Path

28
import numpy as np
29
30
31
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
32
import transformers
33
34
from accelerate import Accelerator
from accelerate.logging import get_logger
35
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
36
from huggingface_hub import create_repo, model_info, upload_folder
37
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41
42
43
44
45
46
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
51
    StableDiffusionPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.optimization import get_scheduler
55
from diffusers.training_utils import compute_snr
56
from diffusers.utils import check_min_version, is_wandb_available
57
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
58
from diffusers.utils.import_utils import is_xformers_available
59
from diffusers.utils.torch_utils import is_compiled_module
60

61

62
63
64
if is_wandb_available():
    import wandb

65
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
66
check_min_version("0.35.0.dev0")
67

68
69
70
logger = get_logger(__name__)


71
72
def save_model_card(
    repo_id: str,
73
74
    images: list = None,
    base_model: str = None,
75
    train_text_encoder=False,
76
77
    prompt: str = None,
    repo_folder: str = None,
78
79
    pipeline: DiffusionPipeline = None,
):
80
    img_str = ""
81
82
83
84
85
86
    if images is not None:
        for i, image in enumerate(images):
            image.save(os.path.join(repo_folder, f"image_{i}.png"))
            img_str += f"![img_{i}](./image_{i}.png)\n"

    model_description = f"""
87
88
89
90
91
92
93
94
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
95
96
97
98
99
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=base_model,
100
        prompt=prompt,
101
102
103
104
        model_description=model_description,
        inference=True,
    )

105
    tags = ["text-to-image", "dreambooth", "diffusers-training"]
106
107
108
109
110
111
112
    if isinstance(pipeline, StableDiffusionPipeline):
        tags.extend(["stable-diffusion", "stable-diffusion-diffusers"])
    else:
        tags.extend(["if", "if-diffusers"])
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
113
114


115
def log_validation(
116
117
118
119
120
121
122
123
124
125
    text_encoder,
    tokenizer,
    unet,
    vae,
    args,
    accelerator,
    weight_dtype,
    global_step,
    prompt_embeds,
    negative_prompt_embeds,
126
):
127
128
129
130
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
131
132
133
134
135
136

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

137
138
139
140
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
141
        text_encoder=text_encoder,
142
        unet=unet,
143
        revision=args.revision,
144
        variant=args.variant,
145
        torch_dtype=weight_dtype,
146
        **pipeline_args,
147
    )
148
149
150
151
152
153
154
155
156
157
158
159

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

160
161
162
    module = importlib.import_module("diffusers")
    scheduler_class = getattr(module, args.validation_scheduler)
    pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args)
163
164
165
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

166
167
168
169
170
171
172
173
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

174
175
176
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
177
178
179
180
181
182
183
184
185
186
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
187
188
189
190

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
191
            tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
192
193
194
195
196
197
198
199
200
201
202
203
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

204
205
    return images

206

207
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
208
209
210
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
211
        revision=revision,
212
213
214
215
216
217
218
219
220
221
222
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
223
224
225
226
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
227
228
229
230
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
231
def parse_args(input_args=None):
232
233
234
235
236
237
238
239
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
240
241
242
243
244
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
245
246
247
248
249
250
251
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
252
    )
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
277
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
278
        help="The prompt with identifier specifying the instance",
279
280
281
282
283
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
284
        help="The prompt to specify images in the same class as provided instance images.",
285
286
287
288
289
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
290
        help="Flag to add prior preservation loss.",
291
292
293
294
295
296
297
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
298
299
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
300
301
302
303
304
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
305
        default="dreambooth-model",
306
307
308
309
310
311
312
313
314
315
316
317
318
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
319
320
321
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
322
323
324
325
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
326
    )
327
328
329
330
331
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
332
333
334
335
336
337
338
339
340
341
342
343
344
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
345
346
347
348
349
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
350
351
352
353
354
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
355
356
        ),
    )
357
    parser.add_argument(
358
        "--checkpoints_total_limit",
359
360
361
362
363
364
365
366
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
367
368
369
370
371
372
373
374
375
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
411
412
413
414
415
416
417
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
418
419
420
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
421
422
423
424
425
426
427
428
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
451
452
453
454
455
456
457
458
459
460
461
462
463
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
464
465
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
466
467
        ),
    )
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
490
491
492
    parser.add_argument(
        "--mixed_precision",
        type=str,
493
        default=None,
494
495
        choices=["no", "fp16", "bf16"],
        help=(
496
497
498
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
499
500
        ),
    )
501
502
503
504
505
506
507
508
509
510
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
511
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
512
513
514
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
515
516
517
518
519
520
521
522
523
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
524

525
526
527
528
529
530
531
532
533
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
534
535
536
537
538
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
Quentin Gallouédec's avatar
Quentin Gallouédec committed
539
        "More details here: https://huggingface.co/papers/2303.09556.",
540
    )
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
562
563
564
565
566
567
568
569
570
571
572
573
574
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
575
576
577
578
579
580
581
    parser.add_argument(
        "--validation_scheduler",
        type=str,
        default="DPMSolverMultistepScheduler",
        choices=["DPMSolverMultistepScheduler", "DDPMScheduler"],
        help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.",
    )
582

583
584
585
586
587
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

588
589
590
591
592
593
594
595
596
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
597
    else:
598
        # logger is not available yet
599
        if args.class_data_dir is not None:
600
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
601
        if args.class_prompt is not None:
602
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
603

604
605
606
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

607
608
609
610
611
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
612
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
613
614
615
616
617
618
619
620
621
622
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
623
        class_num=None,
624
625
        size=512,
        center_crop=False,
626
        encoder_hidden_states=None,
627
        class_prompt_encoder_hidden_states=None,
628
        tokenizer_max_length=None,
629
630
631
632
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
633
        self.encoder_hidden_states = encoder_hidden_states
634
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
635
        self.tokenizer_max_length = tokenizer_max_length
636
637
638

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
639
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
640
641
642
643
644
645
646
647
648

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
649
            self.class_images_path = list(self.class_data_root.iterdir())
650
651
652
653
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
674
675
        instance_image = exif_transpose(instance_image)

676
677
678
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
679
680
681
682
683
684
685
686
687

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
688
689
690

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
691
692
            class_image = exif_transpose(class_image)

693
694
695
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
696

697
698
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
699
700
701
702
703
704
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
705
706
707
708

        return example


709
def collate_fn(examples, with_prior_preservation=False):
710
711
    has_attention_mask = "instance_attention_mask" in examples[0]

712
713
714
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

715
716
717
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

718
719
720
721
722
723
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

724
725
726
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

727
728
729
730
731
732
733
734
735
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
736
737

    if has_attention_mask:
738
        attention_mask = torch.cat(attention_mask, dim=0)
739
740
        batch["attention_mask"] = attention_mask

741
742
743
    return batch


744
class PromptDataset(Dataset):
745
    """A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


761
def model_has_vae(args):
762
    config_file_name = Path("vae", AutoencoderKL.config_name).as_posix()
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
799
        return_dict=False,
800
801
802
803
804
805
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


806
def main(args):
807
808
809
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
810
            " Please use `hf auth login` to authenticate with the Hub."
811
812
        )

813
814
    logging_dir = Path(args.output_dir, args.logging_dir)

815
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
816

817
818
819
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
820
        log_with=args.report_to,
821
        project_config=accelerator_project_config,
822
823
    )

824
825
826
827
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

828
829
830
831
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

832
833
834
835
836
837
838
839
840
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
856
857
858
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
859
    # Generate class images if prior preservation is enabled.
860
861
862
863
864
865
866
867
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
868
869
870
871
872
873
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
874
            pipeline = DiffusionPipeline.from_pretrained(
875
876
877
878
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
879
                variant=args.variant,
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
895
                images = pipeline(example["prompt"]).images
896
897

                for i, image in enumerate(images):
898
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
899
900
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
901
902
903
904
905
906
907

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
908
        if args.output_dir is not None:
909
910
            os.makedirs(args.output_dir, exist_ok=True)

911
912
913
914
915
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

916
917
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
918
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
919
    elif args.pretrained_model_name_or_path:
920
        tokenizer = AutoTokenizer.from_pretrained(
921
922
923
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
924
            use_fast=False,
925
        )
926

927
    # import correct text encoder class
928
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
929

Suraj Patil's avatar
Suraj Patil committed
930
931
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
932
    text_encoder = text_encoder_cls.from_pretrained(
933
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
934
    )
935
936
937

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
938
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
939
940
941
942
        )
    else:
        vae = None

943
    unet = UNet2DConditionModel.from_pretrained(
944
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
945
    )
946

947
948
949
950
951
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

952
953
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
954
955
        if accelerator.is_main_process:
            for model in models:
956
                sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder"
957
                model.save_pretrained(os.path.join(output_dir, sub_dir))
958

959
960
                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()
961
962
963
964
965
966

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

967
            if isinstance(model, type(unwrap_model(text_encoder))):
968
969
970
971
972
973
974
975
976
977
978
979
980
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
981

982
983
984
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
985
986
987
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

988
989
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
990
991
992
993
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
994
                logger.warning(
995
996
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
997
            unet.enable_xformers_memory_efficient_attention()
998
999
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
1000

1001
1002
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
1003
1004
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
1005

1006
1007
1008
1009
1010
1011
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

1012
1013
    if unwrap_model(unet).dtype != torch.float32:
        raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}")
1014

1015
    if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32:
1016
        raise ValueError(
1017
            f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}. {low_precision_error_string}"
1018
1019
        )

Suraj Patil's avatar
Suraj Patil committed
1020
1021
1022
1023
1024
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
1043
    # Optimizer creation
1044
1045
1046
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1047
    optimizer = optimizer_class(
1048
        params_to_optimize,
1049
1050
1051
1052
1053
1054
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1077
1078
        if args.class_prompt is not None:
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
1079
        else:
1080
            pre_computed_class_prompt_encoder_hidden_states = None
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1091
        pre_computed_class_prompt_encoder_hidden_states = None
1092

Suraj Patil's avatar
Suraj Patil committed
1093
    # Dataset and DataLoaders creation:
1094
1095
1096
1097
1098
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1099
        class_num=args.num_class_images,
1100
1101
1102
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1103
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1104
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
1105
        tokenizer_max_length=args.tokenizer_max_length,
1106
1107
1108
    )

    train_dataloader = torch.utils.data.DataLoader(
1109
1110
1111
1112
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1113
        num_workers=args.dataloader_num_workers,
1114
1115
1116
    )

    # Scheduler and math around the number of training steps.
1117
1118
    # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
    num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
1119
    if args.max_train_steps is None:
1120
1121
1122
1123
1124
1125
1126
        len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
        num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
        num_training_steps_for_scheduler = (
            args.num_train_epochs * accelerator.num_processes * num_update_steps_per_epoch
        )
    else:
        num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
1127
1128
1129
1130

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1131
1132
        num_warmup_steps=num_warmup_steps_for_scheduler,
        num_training_steps=num_training_steps_for_scheduler,
1133
1134
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1135
1136
    )

Suraj Patil's avatar
Suraj Patil committed
1137
    # Prepare everything with our `accelerator`.
1138
1139
1140
1141
1142
1143
1144
1145
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1146

1147
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
1148
    # as these weights are only used for inference, keeping weights in full precision is not required.
1149
    weight_dtype = torch.float32
1150
    if accelerator.mixed_precision == "fp16":
1151
        weight_dtype = torch.float16
1152
    elif accelerator.mixed_precision == "bf16":
1153
1154
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1155
    # Move vae and text_encoder to device and cast to weight_dtype
1156
1157
1158
1159
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1160
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1161
1162
1163

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
1164
    if args.max_train_steps is None:
1165
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
1166
1167
1168
1169
1170
1171
        if num_training_steps_for_scheduler != args.max_train_steps:
            logger.warning(
                f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
                f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
                f"This inconsistency may result in the learning rate scheduler not functioning properly."
            )
1172
1173
1174
1175
1176
1177
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1178
        tracker_config = vars(copy.deepcopy(args))
1179
1180
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth", config=tracker_config)
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1193
1194
1195
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1196
    # Potentially load in the weights and states from a previous save
1197
1198
1199
1200
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
1201
            # Get the most recent checkpoint
1202
1203
1204
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1205
1206
1207
1208
1209
1210
1211
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1212
            initial_global_step = 0
1213
1214
1215
1216
1217
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1218
            initial_global_step = global_step
1219
            first_epoch = global_step // num_update_steps_per_epoch
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1230

1231
    for epoch in range(first_epoch, args.num_train_epochs):
1232
        unet.train()
1233
1234
        if args.train_text_encoder:
            text_encoder.train()
1235
1236
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1237
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1238

1239
1240
1241
1242
1243
1244
1245
1246
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1247
                if args.offset_noise:
1248
1249
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1250
1251
                    )
                else:
1252
                    noise = torch.randn_like(model_input)
1253
                bsz, channels, height, width = model_input.shape
1254
                # Sample a random timestep for each image
1255
1256
1257
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1258
1259
                timesteps = timesteps.long()

1260
                # Add noise to the model input according to the noise magnitude at each timestep
1261
                # (this is the forward diffusion process)
1262
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1263
1264

                # Get the text embedding for conditioning
1265
1266
1267
1268
1269
1270
1271
1272
1273
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1274

1275
                if unwrap_model(unet).config.in_channels == channels * 2:
1276
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1277
1278
1279
1280
1281
1282

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1283
                # Predict the noise residual
1284
                model_pred = unet(
1285
1286
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False
                )[0]
1287
1288
1289

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1290
1291
1292
1293
1294

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1295
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1296
1297
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1298
1299

                if args.with_prior_preservation:
1300
1301
1302
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1303
1304
                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1305

1306
1307
                # Compute instance loss
                if args.snr_gamma is None:
1308
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1309
                else:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1310
                    # Compute loss-weights as per Section 3.4 of https://huggingface.co/papers/2303.09556.
1311
1312
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
1313
                    snr = compute_snr(noise_scheduler, timesteps)
1314

1315
1316
                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
1317
                        divisor = snr + 1
1318
                    else:
1319
1320
1321
1322
1323
1324
                        divisor = snr

                    mse_loss_weights = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / divisor
                    )

1325
1326
1327
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()
1328

1329
                if args.with_prior_preservation:
1330
1331
1332
1333
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
1334
                if accelerator.sync_gradients:
1335
1336
1337
1338
1339
1340
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1341
1342
                optimizer.step()
                lr_scheduler.step()
1343
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1344
1345
1346
1347
1348
1349

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1350
1351
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1372
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1373
1374
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1375

1376
1377
                    images = []

1378
                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1379
                        images = log_validation(
1380
                            unwrap_model(text_encoder) if text_encoder is not None else text_encoder,
1381
                            tokenizer,
1382
                            unwrap_model(unet),
1383
1384
1385
1386
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
1387
                            global_step,
1388
1389
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1390
                        )
1391

1392
1393
1394
1395
1396
1397
1398
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1399
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1400
    accelerator.wait_for_everyone()
1401
    if accelerator.is_main_process:
1402
1403
1404
        pipeline_args = {}

        if text_encoder is not None:
1405
            pipeline_args["text_encoder"] = unwrap_model(text_encoder)
1406
1407
1408
1409

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1410
        pipeline = DiffusionPipeline.from_pretrained(
1411
            args.pretrained_model_name_or_path,
1412
            unet=unwrap_model(unet),
1413
            revision=args.revision,
1414
            variant=args.variant,
1415
            **pipeline_args,
1416
        )
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1431
1432
1433
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1434
1435
1436
1437
1438
1439
1440
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1441
                pipeline=pipeline,
1442
            )
1443
1444
1445
1446
1447
1448
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1449
1450
1451
1452
1453

    accelerator.end_training()


if __name__ == "__main__":
1454
1455
    args = parse_args()
    main(args)