train_dreambooth.py 51.6 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import gc
18
import hashlib
19
import itertools
Suraj Patil's avatar
Suraj Patil committed
20
import logging
21
22
import math
import os
23
import warnings
24
25
from pathlib import Path

26
import numpy as np
27
28
29
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
30
import transformers
31
32
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
from huggingface_hub import create_repo, model_info, upload_folder
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
44
45
46
47
48
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
49
    StableDiffusionPipeline,
50
51
    UNet2DConditionModel,
)
52
from diffusers.optimization import get_scheduler
53
from diffusers.utils import check_min_version, is_wandb_available
54
55
from diffusers.utils.import_utils import is_xformers_available

56

57
58
59
if is_wandb_available():
    import wandb

60
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
61
check_min_version("0.17.0.dev0")
62

63
64
65
logger = get_logger(__name__)


66
67
68
69
70
71
72
73
74
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
75
76
77
78
79
80
81
82
83
84
85
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
86
87
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


107
108
109
def log_validation(
    text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch, prompt_embeds, negative_prompt_embeds
):
110
111
112
113
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
114
115
116
117
118
119
120
121
122

    pipeline_args = {}

    if text_encoder is not None:
        pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)

    if vae is not None:
        pipeline_args["vae"] = vae

123
124
125
126
127
128
129
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
        unet=accelerator.unwrap_model(unet),
        revision=args.revision,
        torch_dtype=weight_dtype,
130
        **pipeline_args,
131
    )
132
133
134
135
136
137
138
139
140
141
142
143
144

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
145
146
147
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

148
149
150
151
152
153
154
155
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

156
157
158
159
160
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
161
            image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

180
181
    return images

182

183
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
184
185
186
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
187
        revision=revision,
188
189
190
191
192
193
194
195
196
197
198
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
199
200
201
202
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
203
204
205
206
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
207
def parse_args(input_args=None):
208
209
210
211
212
213
214
215
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
216
217
218
219
220
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
221
222
223
224
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
225
    )
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
250
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
251
        help="The prompt with identifier specifying the instance",
252
253
254
255
256
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
257
        help="The prompt to specify images in the same class as provided instance images.",
258
259
260
261
262
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
263
        help="Flag to add prior preservation loss.",
264
265
266
267
268
269
270
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
271
272
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
292
293
294
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
295
296
297
298
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
299
    )
300
301
302
303
304
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
305
306
307
308
309
310
311
312
313
314
315
316
317
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
318
319
320
321
322
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
323
324
325
326
327
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
328
329
        ),
    )
330
    parser.add_argument(
331
        "--checkpoints_total_limit",
332
333
334
335
336
337
338
339
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
340
341
342
343
344
345
346
347
348
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
384
385
386
387
388
389
390
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
391
392
393
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
394
395
396
397
398
399
400
401
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
424
425
426
427
428
429
430
431
432
433
434
435
436
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
437
438
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
439
440
        ),
    )
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
463
464
465
    parser.add_argument(
        "--mixed_precision",
        type=str,
466
        default=None,
467
468
        choices=["no", "fp16", "bf16"],
        help=(
469
470
471
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
472
473
        ),
    )
474
475
476
477
478
479
480
481
482
483
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
484
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
485
486
487
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
488
489
490
491
492
493
494
495
496
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
497

498
499
500
501
502
503
504
505
506
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
528

529
530
531
532
533
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

534
535
536
537
538
539
540
541
542
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
543
    else:
544
        # logger is not available yet
545
        if args.class_data_dir is not None:
546
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
547
        if args.class_prompt is not None:
548
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
549

550
551
552
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

553
554
555
556
557
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
558
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
559
560
561
562
563
564
565
566
567
568
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
569
        class_num=None,
570
571
        size=512,
        center_crop=False,
572
573
574
        encoder_hidden_states=None,
        instance_prompt_encoder_hidden_states=None,
        tokenizer_max_length=None,
575
576
577
578
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
579
580
581
        self.encoder_hidden_states = encoder_hidden_states
        self.instance_prompt_encoder_hidden_states = instance_prompt_encoder_hidden_states
        self.tokenizer_max_length = tokenizer_max_length
582
583
584

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
585
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
586
587
588
589
590
591
592
593
594

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
595
            self.class_images_path = list(self.class_data_root.iterdir())
596
597
598
599
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
620
621
        instance_image = exif_transpose(instance_image)

622
623
624
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
625
626
627
628
629
630
631
632
633

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
634
635
636

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
637
638
            class_image = exif_transpose(class_image)

639
640
641
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
642
643
644
645
646
647
648
649
650

            if self.instance_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.instance_prompt_encoder_hidden_states
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
651
652
653
654

        return example


655
def collate_fn(examples, with_prior_preservation=False):
656
657
    has_attention_mask = "instance_attention_mask" in examples[0]

658
659
660
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

661
662
663
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

664
665
666
667
668
669
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

670
671
672
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

673
674
675
676
677
678
679
680
681
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
682
683
684
685

    if has_attention_mask:
        batch["attention_mask"] = attention_mask

686
687
688
    return batch


689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
def model_has_vae(args):
    config_file_name = os.path.join("vae", AutoencoderKL.config_name)
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


750
def main(args):
751
752
    logging_dir = Path(args.output_dir, args.logging_dir)

753
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
754

755
756
757
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
758
        log_with=args.report_to,
759
        logging_dir=logging_dir,
760
        project_config=accelerator_project_config,
761
762
    )

763
764
765
766
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

767
768
769
770
771
772
773
774
775
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
791
792
793
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
794
    # Generate class images if prior preservation is enabled.
795
796
797
798
799
800
801
802
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
803
804
805
806
807
808
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
809
            pipeline = DiffusionPipeline.from_pretrained(
810
811
812
813
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
829
                images = pipeline(example["prompt"]).images
830
831

                for i, image in enumerate(images):
832
833
834
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
835
836
837
838
839
840
841

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
842
        if args.output_dir is not None:
843
844
            os.makedirs(args.output_dir, exist_ok=True)

845
846
847
848
849
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

850
851
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
852
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
853
    elif args.pretrained_model_name_or_path:
854
        tokenizer = AutoTokenizer.from_pretrained(
855
856
857
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
858
            use_fast=False,
859
        )
860

861
    # import correct text encoder class
862
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
863

Suraj Patil's avatar
Suraj Patil committed
864
865
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
866
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
867
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
868
    )
869
870
871
872
873
874
875
876

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
    else:
        vae = None

877
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
878
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
879
    )
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        for model in models:
            sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
            model.save_pretrained(os.path.join(output_dir, sub_dir))

            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

            if isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
909

910
911
912
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
913
914
915
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

916
917
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
918
919
920
921
922
923
924
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
925
            unet.enable_xformers_memory_efficient_attention()
926
927
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
928

929
930
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
931
932
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
951
952
953
954
955
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
974
    # Optimizer creation
975
976
977
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
978
    optimizer = optimizer_class(
979
        params_to_optimize,
980
981
982
983
984
985
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

        if args.instance_prompt is not None:
            pre_computed_instance_prompt_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        else:
            pre_computed_instance_prompt_encoder_hidden_states = None

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
        pre_computed_instance_prompt_encoder_hidden_states = None

Suraj Patil's avatar
Suraj Patil committed
1024
    # Dataset and DataLoaders creation:
1025
1026
1027
1028
1029
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1030
        class_num=args.num_class_images,
1031
1032
1033
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1034
1035
1036
        encoder_hidden_states=pre_computed_encoder_hidden_states,
        instance_prompt_encoder_hidden_states=pre_computed_instance_prompt_encoder_hidden_states,
        tokenizer_max_length=args.tokenizer_max_length,
1037
1038
1039
    )

    train_dataloader = torch.utils.data.DataLoader(
1040
1041
1042
1043
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1044
        num_workers=args.dataloader_num_workers,
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
1059
1060
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1061
1062
    )

Suraj Patil's avatar
Suraj Patil committed
1063
    # Prepare everything with our `accelerator`.
1064
1065
1066
1067
1068
1069
1070
1071
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1072

Suraj Patil's avatar
Suraj Patil committed
1073
1074
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
1075
    weight_dtype = torch.float32
1076
    if accelerator.mixed_precision == "fp16":
1077
        weight_dtype = torch.float16
1078
    elif accelerator.mixed_precision == "bf16":
1079
1080
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1081
    # Move vae and text_encoder to device and cast to weight_dtype
1082
1083
1084
1085
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1086
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1111
1112
1113
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1114
    # Potentially load in the weights and states from a previous save
1115
1116
1117
1118
1119
1120
1121
1122
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
1138

1139
    # Only show the progress bar once on each machine.
1140
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
1141
1142
    progress_bar.set_description("Steps")

1143
    for epoch in range(first_epoch, args.num_train_epochs):
1144
        unet.train()
1145
1146
        if args.train_text_encoder:
            text_encoder.train()
1147
        for step, batch in enumerate(train_dataloader):
1148
1149
1150
1151
1152
1153
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

1154
            with accelerator.accumulate(unet):
1155
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1156

1157
1158
1159
1160
1161
1162
1163
1164
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1165
                if args.offset_noise:
1166
1167
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1168
1169
                    )
                else:
1170
1171
                    noise = torch.randn_like(model_input)
                bsz = model_input.shape[0]
1172
                # Sample a random timestep for each image
1173
1174
1175
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1176
1177
                timesteps = timesteps.long()

1178
                # Add noise to the model input according to the noise magnitude at each timestep
1179
                # (this is the forward diffusion process)
1180
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1181
1182

                # Get the text embedding for conditioning
1183
1184
1185
1186
1187
1188
1189
1190
1191
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1192
1193

                # Predict the noise residual
1194
1195
1196
1197
                model_pred = unet(noisy_model_input, timesteps, encoder_hidden_states).sample

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1198
1199
1200
1201
1202

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1203
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1204
1205
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1206
1207

                if args.with_prior_preservation:
1208
1209
1210
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1211
1212

                    # Compute instance loss
1213
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1214
1215

                    # Compute prior loss
1216
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1217
1218
1219
1220

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
1221
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1222
1223

                accelerator.backward(loss)
1224
                if accelerator.sync_gradients:
1225
1226
1227
1228
1229
1230
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1231
1232
                optimizer.step()
                lr_scheduler.step()
1233
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1234
1235
1236
1237
1238
1239

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1240
                if accelerator.is_main_process:
1241
                    images = []
1242
                    if global_step % args.checkpointing_steps == 0:
1243
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1244
1245
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1246
1247

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1248
                        images = log_validation(
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
                            text_encoder,
                            tokenizer,
                            unet,
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
                            epoch,
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1259
                        )
1260

1261
1262
1263
1264
1265
1266
1267
1268
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1269
    accelerator.wait_for_everyone()
1270
    if accelerator.is_main_process:
1271
1272
1273
1274
1275
1276
1277
1278
        pipeline_args = {}

        if text_encoder is not None:
            pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1279
        pipeline = DiffusionPipeline.from_pretrained(
1280
1281
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
1282
            revision=args.revision,
1283
            **pipeline_args,
1284
        )
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1299
1300
1301
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1302
1303
1304
1305
1306
1307
1308
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1309
                pipeline=pipeline,
1310
            )
1311
1312
1313
1314
1315
1316
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1317
1318
1319
1320
1321

    accelerator.end_training()


if __name__ == "__main__":
1322
1323
    args = parse_args()
    main(args)