test_pipelines.py 52.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionOnnxPipeline,
44
    StableDiffusionPipeline,
45
    UNet2DConditionModel,
46
    UNet2DModel,
47
    VQModel,
48
49
)
from diffusers.pipeline_utils import DiffusionPipeline
50
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
51
from diffusers.testing_utils import floats_tensor, load_image, slow, torch_device
52
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME
53
54
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
55
56
57
58
59


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
60
61
62
63
64
65
66
67
68
69
70
71
72
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
73
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
74
75
76
77
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
78
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
79
80
81
82
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


83
class PipelineFastTests(unittest.TestCase):
84
85
86
87
88
89
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
173
            return images, [False] * len(images)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
194
        scheduler = DDIMScheduler()
195
196
197

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
198
        ddpm.set_progress_bar_config(disable=None)
199

200
201
202
203
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

204
        generator = torch.manual_seed(0)
205
206
207
208
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
209
210

        image_slice = image[0, -3:, -3:, -1]
211
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
212
213
214
215
216

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
217
218
219
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
220
221
222

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
223
        scheduler = PNDMScheduler()
224
225
226

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
227
        pndm.set_progress_bar_config(disable=None)
228
229
230
231

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

232
        generator = torch.manual_seed(0)
233
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
234
235

        image_slice = image[0, -3:, -3:, -1]
236
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
237
238
239
240

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
241
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
242
243
244

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
245
        scheduler = DDIMScheduler()
246
247
248
249
250
251
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
252
        ldm.set_progress_bar_config(disable=None)
253
254

        prompt = "A painting of a squirrel eating a burger"
255
256
257
258
259
260
261
262

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy")[
                "sample"
            ]

263
264
265
266
267
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

268
269
270
271
272
273
274
275
276
277
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

278
        image_slice = image[0, -3:, -3:, -1]
279
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
280
281
282
283

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
284
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
285
286

    def test_stable_diffusion_ddim(self):
287
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
311
        sd_pipe = sd_pipe.to(device)
312
        sd_pipe.set_progress_bar_config(disable=None)
313
314

        prompt = "A painting of a squirrel eating a burger"
315

316
317
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
318
        image = output.images
319

320
321
322
323
324
325
326
327
328
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
329
330

        image_slice = image[0, -3:, -3:, -1]
331
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
332
333
334

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
335

336
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
337
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
338
339

    def test_stable_diffusion_pndm(self):
340
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
341
        unet = self.dummy_cond_unet
342
        scheduler = PNDMScheduler(skip_prk_steps=True)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
357
        sd_pipe = sd_pipe.to(device)
358
        sd_pipe.set_progress_bar_config(disable=None)
359
360

        prompt = "A painting of a squirrel eating a burger"
361
362
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
363

364
365
366
367
368
369
370
371
372
373
374
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
375
376

        image_slice = image[0, -3:, -3:, -1]
377
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
378
379
380
381

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
382
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
383
384

    def test_stable_diffusion_k_lms(self):
385
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
402
        sd_pipe = sd_pipe.to(device)
403
        sd_pipe.set_progress_bar_config(disable=None)
404
405

        prompt = "A painting of a squirrel eating a burger"
406
407
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
408

409
410
411
412
413
414
415
416
417
418
419
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
420
421

        image_slice = image[0, -3:, -3:, -1]
422
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
423
424
425
426

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
427
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

461
462
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
463
        scheduler = ScoreSdeVeScheduler()
464
465
466

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
467
        sde_ve.set_progress_bar_config(disable=None)
468

469
470
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
471

472
473
474
475
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
476
477

        image_slice = image[0, -3:, -3:, -1]
478
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
479
480
481
482

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
483
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
484
485
486

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
487
        scheduler = DDIMScheduler()
488
489
490
491
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
492
        ldm.set_progress_bar_config(disable=None)
493

494
495
496
497
498
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

499
        generator = torch.manual_seed(0)
500
501
502
503
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
504
505

        image_slice = image[0, -3:, -3:, -1]
506
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
507
508
509
510

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
511
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
512
513
514

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
515
        scheduler = KarrasVeScheduler()
516
517
518

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
519
        pipe.set_progress_bar_config(disable=None)
520
521

        generator = torch.manual_seed(0)
522
523
524
525
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
526
527

        image_slice = image[0, -3:, -3:, -1]
528
529
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

530
531
532
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
533
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
534
535

    def test_stable_diffusion_img2img(self):
536
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
537
        unet = self.dummy_cond_unet
538
        scheduler = PNDMScheduler(skip_prk_steps=True)
539
540
541
542
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

543
        init_image = self.dummy_image.to(device)
544
545
546
547
548
549
550
551
552
553
554

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
555
        sd_pipe = sd_pipe.to(device)
556
        sd_pipe.set_progress_bar_config(disable=None)
557
558

        prompt = "A painting of a squirrel eating a burger"
559
560
561
562
563
564
565
566
567
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
568

569
570
571
572
573
574
575
576
577
578
579
580
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
581
582

        image_slice = image[0, -3:, -3:, -1]
583
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
584
585
586
587

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
588
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
589

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
624
        image = output.images
625

626
627
628
629
630
631
632
633
634
635
636
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
637
638

        image_slice = image[0, -3:, -3:, -1]
639
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
640
641
642
643

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
644
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
645

646
    def test_stable_diffusion_inpaint(self):
647
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
648
        unet = self.dummy_cond_unet
649
        scheduler = PNDMScheduler(skip_prk_steps=True)
650
651
652
653
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

654
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
655
656
657
658
659
660
661
662
663
664
665
666
667
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
668
        sd_pipe = sd_pipe.to(device)
669
        sd_pipe.set_progress_bar_config(disable=None)
670
671

        prompt = "A painting of a squirrel eating a burger"
672
673
674
675
676
677
678
679
680
681
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
682

683
684
685
686
687
688
689
690
691
692
693
694
695
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
696
697

        image_slice = image[0, -3:, -3:, -1]
698
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
699
700
701
702

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
703
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
704
705


706
class PipelineTesterMixin(unittest.TestCase):
707
708
709
710
711
712
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

734
735
736
737
738
739
740
    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, [False] * len(images)

        return check

741
742
743
744
745
746
747
748
749
750
751
752
753
754
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
755
        ddpm.to(torch_device)
756
        ddpm.set_progress_bar_config(disable=None)
757
758
759
760

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
761
            new_ddpm.to(torch_device)
762
763

        generator = torch.manual_seed(0)
764
        image = ddpm(generator=generator, output_type="numpy").images
765

766
        generator = generator.manual_seed(0)
767
        new_image = new_ddpm(generator=generator, output_type="numpy").images
768
769
770
771
772
773
774

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

775
        scheduler = DDPMScheduler(num_train_timesteps=10)
776

777
778
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
779
        ddpm.set_progress_bar_config(disable=None)
780
781
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
782
        ddpm_from_hub.set_progress_bar_config(disable=None)
783
784

        generator = torch.manual_seed(0)
785
        image = ddpm(generator=generator, output_type="numpy").images
786

787
        generator = generator.manual_seed(0)
788
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
789
790
791
792
793
794
795

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

796
797
        scheduler = DDPMScheduler(num_train_timesteps=10)

798
799
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
800
801
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
802
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
803

804
805
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
806
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
807
808

        generator = torch.manual_seed(0)
809
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
810

811
        generator = generator.manual_seed(0)
812
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
813
814
815
816
817
818
819
820

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
821
        pipe.to(torch_device)
822
        pipe.set_progress_bar_config(disable=None)
823
824

        generator = torch.manual_seed(0)
825
        images = pipe(generator=generator, output_type="numpy").images
826
827
828
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

829
        images = pipe(generator=generator, output_type="pil").images
830
831
832
833
834
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
835
        images = pipe(generator=generator).images
836
837
838
839
840
841
842
843
844
845
846
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
847
        ddpm.to(torch_device)
848
        ddpm.set_progress_bar_config(disable=None)
849
850

        generator = torch.manual_seed(0)
851
        image = ddpm(generator=generator, output_type="numpy").images
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
867
        ddpm.to(torch_device)
868
        ddpm.set_progress_bar_config(disable=None)
869
870

        generator = torch.manual_seed(0)
871
        image = ddpm(generator=generator, output_type="numpy").images
872
873
874
875
876
877
878
879
880
881
882
883

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
884
        scheduler = DDIMScheduler()
885
886

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
887
        ddim.to(torch_device)
888
        ddim.set_progress_bar_config(disable=None)
889
890

        generator = torch.manual_seed(0)
891
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
892
893
894
895
896
897
898
899
900
901
902
903

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
904
        scheduler = PNDMScheduler()
905
906

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
907
        pndm.to(torch_device)
908
        pndm.set_progress_bar_config(disable=None)
909
        generator = torch.manual_seed(0)
910
        image = pndm(generator=generator, output_type="numpy").images
911
912
913
914
915
916
917
918
919
920

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
921
        ldm.to(torch_device)
922
        ldm.set_progress_bar_config(disable=None)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
939
        ldm.to(torch_device)
940
        ldm.set_progress_bar_config(disable=None)
941
942
943

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
944
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
945
946
947
948
949
950
951
952
953
954
955

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
956
957
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
958
        sd_pipe.set_progress_bar_config(disable=None)
959
960
961
962
963
964
965
966

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

967
        image = output.images
968
969
970
971
972
973
974
975
976
977

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
978
979
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
980
        sd_pipe.set_progress_bar_config(disable=None)
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
996
        image = output.images
997
998
999
1000

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1001
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
1002
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1003
1004
1005
1006
1007
1008
1009
1010
1011

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
1012
        sde_ve.to(torch_device)
1013
        sde_ve.set_progress_bar_config(disable=None)
1014

1015
1016
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
1017
1018
1019
1020
1021

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

1022
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
1023
1024
1025
1026
1027
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
1028
        ldm.to(torch_device)
1029
        ldm.set_progress_bar_config(disable=None)
1030
1031

        generator = torch.manual_seed(0)
1032
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1045
1046
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1047
1048

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1049
        ddpm.to(torch_device)
1050
        ddpm.set_progress_bar_config(disable=None)
1051
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1052
        ddim.to(torch_device)
1053
        ddim.set_progress_bar_config(disable=None)
1054
1055

        generator = torch.manual_seed(0)
1056
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1057
1058

        generator = torch.manual_seed(0)
1059
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1060
1061
1062
1063
1064
1065
1066
1067
1068

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1069
1070
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1071
1072

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1073
        ddpm.to(torch_device)
1074
        ddpm.set_progress_bar_config(disable=None)
1075

1076
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1077
        ddim.to(torch_device)
1078
        ddim.set_progress_bar_config(disable=None)
1079
1080

        generator = torch.manual_seed(0)
1081
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
1095
        scheduler = KarrasVeScheduler()
1096
1097

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1098
        pipe.to(torch_device)
1099
        pipe.set_progress_bar_config(disable=None)
1100
1101

        generator = torch.manual_seed(0)
1102
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1103
1104
1105

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
1106
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
1107
1108
1109
1110
1111
1112
1113
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
1114
        pipe.set_progress_bar_config(disable=None)
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1128
1129
1130

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        ).to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1171
1172
1173
1174
    def test_stable_diffusion_text2img_pipeline(self):
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/text2img/astronaut_riding_a_horse.png"
1175
        )
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
            use_auth_token=True,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
        image = output.images[0]
1193

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1210
1211

        model_id = "CompVis/stable-diffusion-v1-4"
1212
1213
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
1214
            safety_checker=self.dummy_safety_checker,
1215
1216
            use_auth_token=True,
        )
1217
        pipe.to(torch_device)
1218
        pipe.set_progress_bar_config(disable=None)
1219
        pipe.enable_attention_slicing()
1220
1221
1222
1223

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1224
1225
1226
1227
1228
1229
1230
1231
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1232
        image = output.images[0]
1233

1234
        assert image.shape == (512, 768, 3)
1235
1236
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1237
1238
1239

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1240
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1241
1242
1243
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
1244
        )
1245
1246
1247
1248
1249
1250
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape_k_lms.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1251
1252
1253
1254

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1255
1256
1257
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
1258
            safety_checker=self.dummy_safety_checker,
1259
1260
            use_auth_token=True,
        )
1261
1262
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1263
        pipe.enable_attention_slicing()
1264
1265
1266
1267

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1268
1269
1270
1271
1272
1273
1274
1275
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1276
        image = output.images[0]
1277

1278
        assert image.shape == (512, 768, 3)
1279
1280
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1281
1282
1283

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1284
    def test_stable_diffusion_inpaint_pipeline(self):
1285
1286
1287
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
1288
        )
1289
1290
1291
1292
1293
1294
1295
1296
1297
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1298
1299

        model_id = "CompVis/stable-diffusion-v1-4"
1300
1301
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
1302
            safety_checker=self.dummy_safety_checker,
1303
1304
            use_auth_token=True,
        )
1305
        pipe.to(torch_device)
1306
        pipe.set_progress_bar_config(disable=None)
1307
        pipe.enable_attention_slicing()
1308

1309
        prompt = "A red cat sitting on a park bench"
1310
1311

        generator = torch.Generator(device=torch_device).manual_seed(0)
1312
1313
1314
1315
1316
1317
1318
1319
1320
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench_k_lms.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=self.dummy_safety_checker,
            use_auth_token=True,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1368
        image = output.images[0]
1369

1370
1371
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2
1372
1373
1374

    @slow
    def test_stable_diffusion_onnx(self):
1375
1376
1377
        sd_pipe = StableDiffusionOnnxPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CUDAExecutionProvider", use_auth_token=True
        )
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=20, output_type="np")
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0385, 0.0252, 0.0234, 0.0287, 0.0358, 0.0287, 0.0276, 0.0235, 0.0010])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3