scheduling_sde_ve.py 11.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import math
18
import warnings
19
20
from dataclasses import dataclass
from typing import Optional, Tuple, Union
21
22
23

import torch

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
44
45


Patrick von Platen's avatar
Patrick von Platen committed
46
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
47
48
49
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

50
51
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

52
53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
55
    [`~ConfigMixin.from_config`] functions.
56

57
    Args:
58
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
59
60
61
62
63
64
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
65
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
66
67
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
Nathan Lambert's avatar
Nathan Lambert committed
68
69
    """

70
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
71
72
    def __init__(
        self,
73
74
75
76
77
78
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
Nathan Lambert's avatar
Nathan Lambert committed
79
    ):
80
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
81
82
        self.timesteps = None

83
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
84

85
    def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
86
87
88
89
90
91
92
93
94
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
95
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
96
97

        self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
98

99
100
101
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
            sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
116
117
118
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
119
        if self.timesteps is None:
120
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
121

122
123
124
        self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
        self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
        self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
125
126

    def get_adjacent_sigma(self, timesteps, t):
127
128
129
130
131
        return torch.where(
            timesteps == 0,
            torch.zeros_like(t.to(timesteps.device)),
            self.discrete_sigmas[timesteps - 1].to(timesteps.device),
        )
Nathan Lambert's avatar
Nathan Lambert committed
132

133
    def set_seed(self, seed):
134
135
136
137
138
        warnings.warn(
            "The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
            " generator instead.",
            DeprecationWarning,
        )
139
        torch.manual_seed(seed)
140
141
142

    def step_pred(
        self,
143
        model_output: torch.FloatTensor,
144
        timestep: int,
145
        sample: torch.FloatTensor,
146
        generator: Optional[torch.Generator] = None,
147
        return_dict: bool = True,
148
        **kwargs,
149
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
150
        """
151
152
153
154
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
155
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
156
            timestep (`int`): current discrete timestep in the diffusion chain.
157
            sample (`torch.FloatTensor`):
158
159
160
161
162
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
163
164
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
165

Nathan Lambert's avatar
Nathan Lambert committed
166
        """
167
168
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
169

170
171
172
173
174
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

175
176
177
178
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
179

180
181
182
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

183
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
184
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
185
        drift = torch.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
186
187
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

188
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
189
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
190
191
192
193
        diffusion = diffusion.flatten()
        while len(diffusion.shape) < len(sample.shape):
            diffusion = diffusion.unsqueeze(-1)
        drift = drift - diffusion**2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
194
195

        #  equation 6: sample noise for the diffusion term of
196
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
197
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
198
        # TODO is the variable diffusion the correct scaling term for the noise?
199
        prev_sample = prev_sample_mean + diffusion * noise  # add impact of diffusion field g
200

201
202
203
204
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
205
206
207

    def step_correct(
        self,
208
209
        model_output: torch.FloatTensor,
        sample: torch.FloatTensor,
210
        generator: Optional[torch.Generator] = None,
211
        return_dict: bool = True,
212
        **kwargs,
213
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
214
        """
215
216
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
217
218

        Args:
219
220
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            sample (`torch.FloatTensor`):
221
222
223
224
225
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
226
227
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
228

Nathan Lambert's avatar
Nathan Lambert committed
229
        """
230
231
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
232

233
234
235
236
237
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
238
239
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
240
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
241

242
        # compute step size from the model_output, the noise, and the snr
243
244
        grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
        noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
Patrick von Platen's avatar
Patrick von Platen committed
245
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
246
247
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
248

249
        # compute corrected sample: model_output term and noise term
250
251
252
253
254
        step_size = step_size.flatten()
        while len(step_size.shape) < len(sample.shape):
            step_size = step_size.unsqueeze(-1)
        prev_sample_mean = sample + step_size * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
255

256
257
258
259
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
260
261
262

    def __len__(self):
        return self.config.num_train_timesteps