scheduling_lms_discrete.py 20.2 KB
Newer Older
1
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
25
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27
28


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
32
    Output class for the scheduler's `step` function output.
33
34

    Args:
35
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
36
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
            denoising loop.
38
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
40
41
42
            `pred_original_sample` can be used to preview progress or for guidance.
    """

43
44
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
45
46


47
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
54
55
56
57
58
59
60
61
62
63
64
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69
70

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
82
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
90
91
    return torch.tensor(betas, dtype=torch.float32)


92
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
93
    """
94
    A linear multistep scheduler for discrete beta schedules.
95

96
97
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
98

99
    Args:
100
101
102
103
104
105
106
107
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
108
            `linear` or `scaled_linear`.
109
110
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
111
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
114
115
116
117
118
119
120
121
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
122
            An offset added to the inference steps, as required by some model families.
123
124
    """

Kashif Rasul's avatar
Kashif Rasul committed
125
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
126
    order = 1
127

128
129
130
    @register_to_config
    def __init__(
        self,
131
132
133
134
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
135
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
136
        use_karras_sigmas: Optional[bool] = False,
137
        prediction_type: str = "epsilon",
138
139
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
140
    ):
141
        if trained_betas is not None:
142
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
143
        elif beta_schedule == "linear":
144
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
145
146
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
147
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
148
149
150
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
151
        else:
152
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
153
154

        self.alphas = 1.0 - self.betas
155
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
156

157
158
159
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
160
161
162

        # setable values
        self.num_inference_steps = None
163
164
        self.use_karras_sigmas = use_karras_sigmas
        self.set_timesteps(num_train_timesteps, None)
165
        self.derivatives = []
166
167
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
168
        self._step_index = None
169
        self._begin_index = None
170
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
171

172
173
174
175
176
177
178
179
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
180
181
182
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
183
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
184
185
186
        """
        return self._step_index

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

205
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
206
        """
207
208
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
209
210

        Args:
211
            sample (`torch.Tensor`):
212
                The input sample.
213
            timestep (`float` or `torch.Tensor`):
214
                The current timestep in the diffusion chain.
215
216

        Returns:
217
            `torch.Tensor`:
218
                A scaled input sample.
219
        """
YiYi Xu's avatar
YiYi Xu committed
220
221
222
223
224

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
225
226
227
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
228
229
230

    def get_lms_coefficient(self, order, t, current_order):
        """
231
        Compute the linear multistep coefficient.
232
233

        Args:
234
235
236
            order ():
            t ():
            current_order ():
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

251
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
252
        """
253
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
254
255
256

        Args:
            num_inference_steps (`int`):
257
258
259
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
260
        """
261
262
        self.num_inference_steps = num_inference_steps

263
264
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
265
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
266
267
268
269
270
271
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
272
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
273
274
275
276
277
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
278
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
279
280
281
282
283
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
284

285
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
286
        log_sigmas = np.log(sigmas)
287
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
288

289
        if self.config.use_karras_sigmas:
290
291
292
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

293
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
294

295
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
296
297
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
298
        self._begin_index = None
299
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
300
301
302

        self.derivatives = []

303
304
305
306
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
307

308
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
309
310
311
312
313

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
314
315
316
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()
YiYi Xu's avatar
YiYi Xu committed
317

318
319
320
321
322
323
324
325
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
326

327
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
328
329
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
330
        log_sigma = np.log(np.maximum(sigma, 1e-10))
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

351
    # copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
352
    def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
353
354
355
356
357
358
359
360
361
362
363
364
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

365
366
    def step(
        self,
367
368
369
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
370
        order: int = 4,
371
        return_dict: bool = True,
372
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
373
        """
374
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
375
376
377
        process from the learned model outputs (most often the predicted noise).

        Args:
378
            model_output (`torch.Tensor`):
379
                The direct output from learned diffusion model.
380
            timestep (`float` or `torch.Tensor`):
381
                The current discrete timestep in the diffusion chain.
382
            sample (`torch.Tensor`):
383
384
385
386
387
                A current instance of a sample created by the diffusion process.
            order (`int`, defaults to 4):
                The order of the linear multistep method.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
388
389

        Returns:
390
391
392
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
393
394

        """
395
396
397
398
399
400
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
401
402
403
404
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
405
406

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
407
408
409
410
411
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
412
413
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
414
415
416
417
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
418
419
420
421
422
423
424
425

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
YiYi Xu's avatar
YiYi Xu committed
426
427
        order = min(self.step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)]
428
429
430
431
432
433

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

YiYi Xu's avatar
YiYi Xu committed
434
435
436
        # upon completion increase step index by one
        self._step_index += 1

437
438
439
        if not return_dict:
            return (prev_sample,)

440
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
441

442
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
443
444
    def add_noise(
        self,
445
446
447
448
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
449
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
450
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
451
452
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
453
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
454
455
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
456
            schedule_timesteps = self.timesteps.to(original_samples.device)
457
            timesteps = timesteps.to(original_samples.device)
458

459
460
461
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
462
463
464
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
465
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
466
            # add noise is called before first denoising step to create initial latent(img2img)
467
            step_indices = [self.begin_index] * timesteps.shape[0]
468

469
        sigma = sigmas[step_indices].flatten()
470
471
472
473
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
474
475
476
477
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps