scheduling_lms_discrete.py 13.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
25
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27
28


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


77
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
78
79
80
81
82
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
101
102
    """

Kashif Rasul's avatar
Kashif Rasul committed
103
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
104
    order = 1
105

106
107
108
    @register_to_config
    def __init__(
        self,
109
110
111
112
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
113
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
114
        prediction_type: str = "epsilon",
115
    ):
116
        if trained_betas is not None:
117
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
118
        elif beta_schedule == "linear":
119
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
120
121
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
122
123
124
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
125
126
127
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
128
129
130
131
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
132
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
133

134
135
136
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
137

138
139
140
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

141
142
        # setable values
        self.num_inference_steps = None
143
144
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
145
        self.derivatives = []
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
168
169
170

    def get_lms_coefficient(self, order, t, current_order):
        """
171
172
173
174
175
176
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

191
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
192
193
194
195
196
197
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
198
199
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
200
        """
201
202
        self.num_inference_steps = num_inference_steps

203
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
204
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
205
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
206
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
207

208
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
209
210
211
212
213
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
214
215
216
217
218

        self.derivatives = []

    def step(
        self,
219
        model_output: torch.FloatTensor,
220
        timestep: Union[float, torch.FloatTensor],
221
        sample: torch.FloatTensor,
222
        order: int = 4,
223
        return_dict: bool = True,
224
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
225
226
227
228
229
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
230
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
231
            timestep (`float`): current timestep in the diffusion chain.
232
            sample (`torch.FloatTensor`):
233
234
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
235
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
236
237

        Returns:
238
239
240
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
241
242

        """
243
244
245
246
247
248
249
250
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
251
        step_index = (self.timesteps == timestep).nonzero().item()
252
        sigma = self.sigmas[step_index]
253
254

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
255
256
257
258
259
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
260
261
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
262
263
264
265
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
266
267
268
269
270
271
272
273

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
274
275
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
276
277
278
279
280
281

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

282
283
284
        if not return_dict:
            return (prev_sample,)

285
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
286

287
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
288
289
    def add_noise(
        self,
290
291
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
292
        timesteps: torch.FloatTensor,
293
    ) -> torch.FloatTensor:
294
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
295
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
296
297
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
298
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
299
300
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
301
            schedule_timesteps = self.timesteps.to(original_samples.device)
302
            timesteps = timesteps.to(original_samples.device)
303

Anton Lozhkov's avatar
Anton Lozhkov committed
304
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
305

306
        sigma = sigmas[step_indices].flatten()
307
308
309
310
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
311
312
313
314
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps