scheduling_lms_discrete.py 20.3 KB
Newer Older
1
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
25
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27
28


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
32
    Output class for the scheduler's `step` function output.
33
34
35

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
38
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
40
41
42
43
44
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


47
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
54
55
56
57
58
59
60
61
62
63
64
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69
70

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
82
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
90
91
    return torch.tensor(betas, dtype=torch.float32)


92
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
93
    """
94
    A linear multistep scheduler for discrete beta schedules.
95

96
97
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
98

99
    Args:
100
101
102
103
104
105
106
107
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
108
            `linear` or `scaled_linear`.
109
110
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
111
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
114
115
116
117
118
119
120
121
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
122
            An offset added to the inference steps, as required by some model families.
123
124
    """

Kashif Rasul's avatar
Kashif Rasul committed
125
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
126
    order = 1
127

128
129
130
    @register_to_config
    def __init__(
        self,
131
132
133
134
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
135
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
136
        use_karras_sigmas: Optional[bool] = False,
137
        prediction_type: str = "epsilon",
138
139
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
140
    ):
141
        if trained_betas is not None:
142
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
143
        elif beta_schedule == "linear":
144
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
145
146
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
147
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
148
149
150
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
151
152
153
154
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
155
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
156

157
158
159
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
160
161
162

        # setable values
        self.num_inference_steps = None
163
164
        self.use_karras_sigmas = use_karras_sigmas
        self.set_timesteps(num_train_timesteps, None)
165
        self.derivatives = []
166
167
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
168
        self._step_index = None
169
        self._begin_index = None
170
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
171

172
173
174
175
176
177
178
179
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
180
181
182
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
183
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
184
185
186
        """
        return self._step_index

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

205
206
207
208
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
209
210
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
211
212

        Args:
213
214
215
216
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`float` or `torch.FloatTensor`):
                The current timestep in the diffusion chain.
217
218

        Returns:
219
220
            `torch.FloatTensor`:
                A scaled input sample.
221
        """
YiYi Xu's avatar
YiYi Xu committed
222
223
224
225
226

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
227
228
229
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
230
231
232

    def get_lms_coefficient(self, order, t, current_order):
        """
233
        Compute the linear multistep coefficient.
234
235

        Args:
236
237
238
            order ():
            t ():
            current_order ():
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

253
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
254
        """
255
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
256
257
258

        Args:
            num_inference_steps (`int`):
259
260
261
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
262
        """
263
264
        self.num_inference_steps = num_inference_steps

265
266
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
267
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
268
269
270
271
272
273
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
274
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
275
276
277
278
279
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
280
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
281
282
283
284
285
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
286

287
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
288
        log_sigmas = np.log(sigmas)
289
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
290

291
        if self.config.use_karras_sigmas:
292
293
294
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

295
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
296

297
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
298
299
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
300
        self._begin_index = None
301
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
302
303
304

        self.derivatives = []

305
306
307
308
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
309

310
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
311
312
313
314
315

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
316
317
318
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()
YiYi Xu's avatar
YiYi Xu committed
319

320
321
322
323
324
325
326
327
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
328

329
330
331
    # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
332
        log_sigma = np.log(np.maximum(sigma, 1e-10))
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

367
368
    def step(
        self,
369
        model_output: torch.FloatTensor,
370
        timestep: Union[float, torch.FloatTensor],
371
        sample: torch.FloatTensor,
372
        order: int = 4,
373
        return_dict: bool = True,
374
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
375
        """
376
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
377
378
379
        process from the learned model outputs (most often the predicted noise).

        Args:
380
381
382
383
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float` or `torch.FloatTensor`):
                The current discrete timestep in the diffusion chain.
384
            sample (`torch.FloatTensor`):
385
386
387
388
389
                A current instance of a sample created by the diffusion process.
            order (`int`, defaults to 4):
                The order of the linear multistep method.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
390
391

        Returns:
392
393
394
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
395
396

        """
397
398
399
400
401
402
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
403
404
405
406
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
407
408

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
409
410
411
412
413
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
414
415
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
416
417
418
419
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
420
421
422
423
424
425
426
427

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
YiYi Xu's avatar
YiYi Xu committed
428
429
        order = min(self.step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)]
430
431
432
433
434
435

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

YiYi Xu's avatar
YiYi Xu committed
436
437
438
        # upon completion increase step index by one
        self._step_index += 1

439
440
441
        if not return_dict:
            return (prev_sample,)

442
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
443

444
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
445
446
    def add_noise(
        self,
447
448
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
449
        timesteps: torch.FloatTensor,
450
    ) -> torch.FloatTensor:
451
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
452
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
453
454
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
455
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
456
457
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
458
            schedule_timesteps = self.timesteps.to(original_samples.device)
459
            timesteps = timesteps.to(original_samples.device)
460

461
462
463
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
464
465
466
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
467
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
468
            # add noise is called before first denoising step to create initial latent(img2img)
469
            step_indices = [self.begin_index] * timesteps.shape[0]
470

471
        sigma = sigmas[step_indices].flatten()
472
473
474
475
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
476
477
478
479
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps