scheduling_lms_discrete.py 9.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from dataclasses import dataclass
16
from typing import Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import BaseOutput, deprecate
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from .scheduling_utils import SchedulerMixin


@dataclass
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
44
45
46


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
47
48
49
50
51
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

52
53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
55
    [`~ConfigMixin.from_config`] functions.
56

57
58
59
60
61
62
63
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
64
65
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
66
67
68

    """

69
70
71
    @register_to_config
    def __init__(
        self,
72
73
74
75
76
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
77
        **kwargs,
78
    ):
79
80
81
82
83
84
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
85

86
        if trained_betas is not None:
87
            self.betas = torch.from_numpy(trained_betas)
88
        elif beta_schedule == "linear":
89
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
90
91
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
92
93
94
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
95
96
97
98
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
99
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
100

101
102
103
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
104
105
106

        # setable values
        self.num_inference_steps = None
107
108
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
109
110
111
112
        self.derivatives = []

    def get_lms_coefficient(self, order, t, current_order):
        """
113
114
115
116
117
118
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

133
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
134
135
136
137
138
139
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
140
141
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
142
        """
143
144
        self.num_inference_steps = num_inference_steps

145
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
146
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
147
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
148
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
149
150
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
151
152
153
154
155

        self.derivatives = []

    def step(
        self,
156
        model_output: torch.FloatTensor,
157
        timestep: int,
158
        sample: torch.FloatTensor,
159
        order: int = 4,
160
        return_dict: bool = True,
161
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
162
163
164
165
166
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
167
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
168
            timestep (`int`): current discrete timestep in the diffusion chain.
169
            sample (`torch.FloatTensor`):
170
171
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
172
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
173
174

        Returns:
175
176
177
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
178
179

        """
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        sigma = self.sigmas[timestep]

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
        order = min(timestep + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, timestep, curr_order) for curr_order in range(order)]

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

200
201
202
        if not return_dict:
            return (prev_sample,)

203
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
204

205
206
    def add_noise(
        self,
207
208
209
210
211
212
213
214
215
216
217
218
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        sigmas = self.sigmas.to(original_samples.device)
        timesteps = timesteps.to(original_samples.device)

        sigma = sigmas[timesteps].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
219
220
221
222
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps