Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
e97a633b
Unverified
Commit
e97a633b
authored
Mar 18, 2024
by
M. Tolga Cangöz
Committed by
GitHub
Mar 18, 2024
Browse files
Update access of configuration attributes (#7343)
Co-authored-by:
Sayak Paul
<
spsayakpaul@gmail.com
>
parent
01ac37b3
Changes
20
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
36 additions
and
36 deletions
+36
-36
docs/source/ko/optimization/fp16.md
docs/source/ko/optimization/fp16.md
+1
-1
docs/source/ko/using-diffusers/write_own_pipeline.md
docs/source/ko/using-diffusers/write_own_pipeline.md
+1
-1
examples/community/stable_diffusion_ipex.py
examples/community/stable_diffusion_ipex.py
+2
-2
examples/community/stable_diffusion_tensorrt_txt2img.py
examples/community/stable_diffusion_tensorrt_txt2img.py
+1
-1
scripts/convert_if.py
scripts/convert_if.py
+3
-3
src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py
src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py
+1
-1
src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py
...lines/deepfloyd_if/pipeline_if_img2img_superresolution.py
+1
-1
src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py
...iffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py
+2
-2
src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py
...es/deepfloyd_if/pipeline_if_inpainting_superresolution.py
+2
-2
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
...table_diffusion/pipeline_onnx_stable_diffusion_upscale.py
+4
-4
src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
...able_diffusion_gligen/pipeline_stable_diffusion_gligen.py
+2
-2
src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
...ion_gligen/pipeline_stable_diffusion_gligen_text_image.py
+1
-1
src/diffusers/schedulers/scheduling_consistency_models.py
src/diffusers/schedulers/scheduling_consistency_models.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
...sers/schedulers/scheduling_dpmsolver_multistep_inverse.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
+1
-1
src/diffusers/schedulers/scheduling_euler_discrete.py
src/diffusers/schedulers/scheduling_euler_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_lms_discrete.py
src/diffusers/schedulers/scheduling_lms_discrete.py
+1
-1
tests/models/unets/test_models_unet_2d_condition.py
tests/models/unets/test_models_unet_2d_condition.py
+2
-2
tests/others/test_config.py
tests/others/test_config.py
+6
-6
tests/pipelines/dance_diffusion/test_dance_diffusion.py
tests/pipelines/dance_diffusion/test_dance_diffusion.py
+2
-2
No files found.
docs/source/ko/optimization/fp16.md
View file @
e97a633b
...
@@ -355,7 +355,7 @@ unet_traced = torch.jit.load("unet_traced.pt")
...
@@ -355,7 +355,7 @@ unet_traced = torch.jit.load("unet_traced.pt")
class
TracedUNet
(
torch
.
nn
.
Module
):
class
TracedUNet
(
torch
.
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
().
__init__
()
super
().
__init__
()
self
.
in_channels
=
pipe
.
unet
.
in_channels
self
.
in_channels
=
pipe
.
unet
.
config
.
in_channels
self
.
device
=
pipe
.
unet
.
device
self
.
device
=
pipe
.
unet
.
device
def
forward
(
self
,
latent_model_input
,
t
,
encoder_hidden_states
):
def
forward
(
self
,
latent_model_input
,
t
,
encoder_hidden_states
):
...
...
docs/source/ko/using-diffusers/write_own_pipeline.md
View file @
e97a633b
...
@@ -210,7 +210,7 @@ Stable Diffusion 은 text-to-image *latent diffusion* 모델입니다. latent di
...
@@ -210,7 +210,7 @@ Stable Diffusion 은 text-to-image *latent diffusion* 모델입니다. latent di
```
py
```
py
>>>
latents
=
torch
.
randn
(
>>>
latents
=
torch
.
randn
(
...
(
batch_size
,
unet
.
in_channels
,
height
//
8
,
width
//
8
),
...
(
batch_size
,
unet
.
config
.
in_channels
,
height
//
8
,
width
//
8
),
...
generator
=
generator
,
...
generator
=
generator
,
...
device
=
torch_device
,
...
device
=
torch_device
,
...
)
...
)
...
...
examples/community/stable_diffusion_ipex.py
View file @
e97a633b
...
@@ -224,7 +224,7 @@ class StableDiffusionIPEXPipeline(
...
@@ -224,7 +224,7 @@ class StableDiffusionIPEXPipeline(
# 5. Prepare latent variables
# 5. Prepare latent variables
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
*
num_images_per_prompt
,
batch_size
*
num_images_per_prompt
,
self
.
unet
.
in_channels
,
self
.
unet
.
config
.
in_channels
,
height
,
height
,
width
,
width
,
prompt_embeds
.
dtype
,
prompt_embeds
.
dtype
,
...
@@ -679,7 +679,7 @@ class StableDiffusionIPEXPipeline(
...
@@ -679,7 +679,7 @@ class StableDiffusionIPEXPipeline(
timesteps
=
self
.
scheduler
.
timesteps
timesteps
=
self
.
scheduler
.
timesteps
# 5. Prepare latent variables
# 5. Prepare latent variables
num_channels_latents
=
self
.
unet
.
in_channels
num_channels_latents
=
self
.
unet
.
config
.
in_channels
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
*
num_images_per_prompt
,
batch_size
*
num_images_per_prompt
,
num_channels_latents
,
num_channels_latents
,
...
...
examples/community/stable_diffusion_tensorrt_txt2img.py
View file @
e97a633b
...
@@ -917,7 +917,7 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
...
@@ -917,7 +917,7 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
text_embeddings
=
self
.
__encode_prompt
(
prompt
,
negative_prompt
)
text_embeddings
=
self
.
__encode_prompt
(
prompt
,
negative_prompt
)
# Pre-initialize latents
# Pre-initialize latents
num_channels_latents
=
self
.
unet
.
in_channels
num_channels_latents
=
self
.
unet
.
config
.
in_channels
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
,
batch_size
,
num_channels_latents
,
num_channels_latents
,
...
...
scripts/convert_if.py
View file @
e97a633b
...
@@ -1195,9 +1195,9 @@ def superres_check_against_original(dump_path, unet_checkpoint_path):
...
@@ -1195,9 +1195,9 @@ def superres_check_against_original(dump_path, unet_checkpoint_path):
if_II_model
=
IFStageIII
(
device
=
"cuda"
,
dir_or_name
=
orig_path
,
model_kwargs
=
{
"precision"
:
"fp32"
}).
model
if_II_model
=
IFStageIII
(
device
=
"cuda"
,
dir_or_name
=
orig_path
,
model_kwargs
=
{
"precision"
:
"fp32"
}).
model
batch_size
=
1
batch_size
=
1
channels
=
model
.
in_channels
//
2
channels
=
model
.
config
.
in_channels
//
2
height
=
model
.
sample_size
height
=
model
.
config
.
sample_size
width
=
model
.
sample_size
width
=
model
.
config
.
sample_size
height
=
1024
height
=
1024
width
=
1024
width
=
1024
...
...
src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py
View file @
e97a633b
...
@@ -613,7 +613,7 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -613,7 +613,7 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
for
image_
in
image
:
for
image_
in
image
:
image_
=
image_
.
convert
(
"RGB"
)
image_
=
image_
.
convert
(
"RGB"
)
image_
=
resize
(
image_
,
self
.
unet
.
sample_size
)
image_
=
resize
(
image_
,
self
.
unet
.
config
.
sample_size
)
image_
=
np
.
array
(
image_
)
image_
=
np
.
array
(
image_
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
/
127.5
-
1
image_
=
image_
/
127.5
-
1
...
...
src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py
View file @
e97a633b
...
@@ -662,7 +662,7 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -662,7 +662,7 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
for
image_
in
image
:
for
image_
in
image
:
image_
=
image_
.
convert
(
"RGB"
)
image_
=
image_
.
convert
(
"RGB"
)
image_
=
resize
(
image_
,
self
.
unet
.
sample_size
)
image_
=
resize
(
image_
,
self
.
unet
.
config
.
sample_size
)
image_
=
np
.
array
(
image_
)
image_
=
np
.
array
(
image_
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
/
127.5
-
1
image_
=
image_
/
127.5
-
1
...
...
src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py
View file @
e97a633b
...
@@ -654,7 +654,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -654,7 +654,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
for
image_
in
image
:
for
image_
in
image
:
image_
=
image_
.
convert
(
"RGB"
)
image_
=
image_
.
convert
(
"RGB"
)
image_
=
resize
(
image_
,
self
.
unet
.
sample_size
)
image_
=
resize
(
image_
,
self
.
unet
.
config
.
sample_size
)
image_
=
np
.
array
(
image_
)
image_
=
np
.
array
(
image_
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
/
127.5
-
1
image_
=
image_
/
127.5
-
1
...
@@ -701,7 +701,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -701,7 +701,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
for
mask_image_
in
mask_image
:
for
mask_image_
in
mask_image
:
mask_image_
=
mask_image_
.
convert
(
"L"
)
mask_image_
=
mask_image_
.
convert
(
"L"
)
mask_image_
=
resize
(
mask_image_
,
self
.
unet
.
sample_size
)
mask_image_
=
resize
(
mask_image_
,
self
.
unet
.
config
.
sample_size
)
mask_image_
=
np
.
array
(
mask_image_
)
mask_image_
=
np
.
array
(
mask_image_
)
mask_image_
=
mask_image_
[
None
,
None
,
:]
mask_image_
=
mask_image_
[
None
,
None
,
:]
new_mask_image
.
append
(
mask_image_
)
new_mask_image
.
append
(
mask_image_
)
...
...
src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py
View file @
e97a633b
...
@@ -698,7 +698,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -698,7 +698,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
for
image_
in
image
:
for
image_
in
image
:
image_
=
image_
.
convert
(
"RGB"
)
image_
=
image_
.
convert
(
"RGB"
)
image_
=
resize
(
image_
,
self
.
unet
.
sample_size
)
image_
=
resize
(
image_
,
self
.
unet
.
config
.
sample_size
)
image_
=
np
.
array
(
image_
)
image_
=
np
.
array
(
image_
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
.
astype
(
np
.
float32
)
image_
=
image_
/
127.5
-
1
image_
=
image_
/
127.5
-
1
...
@@ -778,7 +778,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
...
@@ -778,7 +778,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
for
mask_image_
in
mask_image
:
for
mask_image_
in
mask_image
:
mask_image_
=
mask_image_
.
convert
(
"L"
)
mask_image_
=
mask_image_
.
convert
(
"L"
)
mask_image_
=
resize
(
mask_image_
,
self
.
unet
.
sample_size
)
mask_image_
=
resize
(
mask_image_
,
self
.
unet
.
config
.
sample_size
)
mask_image_
=
np
.
array
(
mask_image_
)
mask_image_
=
np
.
array
(
mask_image_
)
mask_image_
=
mask_image_
[
None
,
None
,
:]
mask_image_
=
mask_image_
[
None
,
None
,
:]
new_mask_image
.
append
(
mask_image_
)
new_mask_image
.
append
(
mask_image_
)
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
View file @
e97a633b
...
@@ -469,7 +469,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
...
@@ -469,7 +469,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
*
num_images_per_prompt
,
batch_size
*
num_images_per_prompt
,
self
.
num_latent_channels
,
self
.
config
.
num_latent_channels
,
height
,
height
,
width
,
width
,
latents_dtype
,
latents_dtype
,
...
@@ -498,12 +498,12 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
...
@@ -498,12 +498,12 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
# 7. Check that sizes of image and latents match
# 7. Check that sizes of image and latents match
num_channels_image
=
image
.
shape
[
1
]
num_channels_image
=
image
.
shape
[
1
]
if
self
.
num_latent_channels
+
num_channels_image
!=
self
.
num_unet_input_channels
:
if
self
.
config
.
num_latent_channels
+
num_channels_image
!=
self
.
config
.
num_unet_input_channels
:
raise
ValueError
(
raise
ValueError
(
"Incorrect configuration settings! The config of `pipeline.unet` expects"
"Incorrect configuration settings! The config of `pipeline.unet` expects"
f
"
{
self
.
num_unet_input_channels
}
but received `num_channels_latents`:
{
self
.
num_latent_channels
}
+"
f
"
{
self
.
config
.
num_unet_input_channels
}
but received `num_channels_latents`:
{
self
.
config
.
num_latent_channels
}
+"
f
" `num_channels_image`:
{
num_channels_image
}
"
f
" `num_channels_image`:
{
num_channels_image
}
"
f
" =
{
self
.
num_latent_channels
+
num_channels_image
}
. Please verify the config of"
f
" =
{
self
.
config
.
num_latent_channels
+
num_channels_image
}
. Please verify the config of"
" `pipeline.unet` or your `image` input."
" `pipeline.unet` or your `image` input."
)
)
...
...
src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
View file @
e97a633b
...
@@ -680,7 +680,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin):
...
@@ -680,7 +680,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin):
timesteps
=
self
.
scheduler
.
timesteps
timesteps
=
self
.
scheduler
.
timesteps
# 5. Prepare latent variables
# 5. Prepare latent variables
num_channels_latents
=
self
.
unet
.
in_channels
num_channels_latents
=
self
.
unet
.
config
.
in_channels
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
*
num_images_per_prompt
,
batch_size
*
num_images_per_prompt
,
num_channels_latents
,
num_channels_latents
,
...
@@ -713,7 +713,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin):
...
@@ -713,7 +713,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin):
boxes
=
torch
.
zeros
(
max_objs
,
4
,
device
=
device
,
dtype
=
self
.
text_encoder
.
dtype
)
boxes
=
torch
.
zeros
(
max_objs
,
4
,
device
=
device
,
dtype
=
self
.
text_encoder
.
dtype
)
boxes
[:
n_objs
]
=
torch
.
tensor
(
gligen_boxes
)
boxes
[:
n_objs
]
=
torch
.
tensor
(
gligen_boxes
)
text_embeddings
=
torch
.
zeros
(
text_embeddings
=
torch
.
zeros
(
max_objs
,
self
.
unet
.
cross_attention_dim
,
device
=
device
,
dtype
=
self
.
text_encoder
.
dtype
max_objs
,
self
.
unet
.
config
.
cross_attention_dim
,
device
=
device
,
dtype
=
self
.
text_encoder
.
dtype
)
)
text_embeddings
[:
n_objs
]
=
_text_embeddings
text_embeddings
[:
n_objs
]
=
_text_embeddings
# Generate a mask for each object that is entity described by phrases
# Generate a mask for each object that is entity described by phrases
...
...
src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
View file @
e97a633b
...
@@ -847,7 +847,7 @@ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionM
...
@@ -847,7 +847,7 @@ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionM
timesteps
=
self
.
scheduler
.
timesteps
timesteps
=
self
.
scheduler
.
timesteps
# 5. Prepare latent variables
# 5. Prepare latent variables
num_channels_latents
=
self
.
unet
.
in_channels
num_channels_latents
=
self
.
unet
.
config
.
in_channels
latents
=
self
.
prepare_latents
(
latents
=
self
.
prepare_latents
(
batch_size
*
num_images_per_prompt
,
batch_size
*
num_images_per_prompt
,
num_channels_latents
,
num_channels_latents
,
...
...
src/diffusers/schedulers/scheduling_consistency_models.py
View file @
e97a633b
...
@@ -233,7 +233,7 @@ class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
...
@@ -233,7 +233,7 @@ class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
sigmas
=
self
.
_convert_to_karras
(
ramp
)
sigmas
=
self
.
_convert_to_karras
(
ramp
)
timesteps
=
self
.
sigma_to_t
(
sigmas
)
timesteps
=
self
.
sigma_to_t
(
sigmas
)
sigmas
=
np
.
concatenate
([
sigmas
,
[
self
.
sigma_min
]]).
astype
(
np
.
float32
)
sigmas
=
np
.
concatenate
([
sigmas
,
[
self
.
config
.
sigma_min
]]).
astype
(
np
.
float32
)
self
.
sigmas
=
torch
.
from_numpy
(
sigmas
).
to
(
device
=
device
)
self
.
sigmas
=
torch
.
from_numpy
(
sigmas
).
to
(
device
=
device
)
if
str
(
device
).
startswith
(
"mps"
):
if
str
(
device
).
startswith
(
"mps"
):
...
...
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
View file @
e97a633b
...
@@ -233,7 +233,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
...
@@ -233,7 +233,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"""
"""
# Clipping the minimum of all lambda(t) for numerical stability.
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
clipped_idx
=
torch
.
searchsorted
(
torch
.
flip
(
self
.
lambda_t
,
[
0
]),
self
.
lambda_min_clipped
).
item
()
clipped_idx
=
torch
.
searchsorted
(
torch
.
flip
(
self
.
lambda_t
,
[
0
]),
self
.
config
.
lambda_min_clipped
).
item
()
self
.
noisiest_timestep
=
self
.
config
.
num_train_timesteps
-
1
-
clipped_idx
self
.
noisiest_timestep
=
self
.
config
.
num_train_timesteps
-
1
-
clipped_idx
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
...
...
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
View file @
e97a633b
...
@@ -325,7 +325,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
...
@@ -325,7 +325,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
log_sigmas
=
np
.
log
(
sigmas
)
log_sigmas
=
np
.
log
(
sigmas
)
sigmas
=
np
.
interp
(
timesteps
,
np
.
arange
(
0
,
len
(
sigmas
)),
sigmas
)
sigmas
=
np
.
interp
(
timesteps
,
np
.
arange
(
0
,
len
(
sigmas
)),
sigmas
)
if
self
.
use_karras_sigmas
:
if
self
.
config
.
use_karras_sigmas
:
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
)
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
)
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
...
...
src/diffusers/schedulers/scheduling_euler_discrete.py
View file @
e97a633b
...
@@ -343,7 +343,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -343,7 +343,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
" 'linear' or 'log_linear'"
" 'linear' or 'log_linear'"
)
)
if
self
.
use_karras_sigmas
:
if
self
.
config
.
use_karras_sigmas
:
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
,
num_inference_steps
=
self
.
num_inference_steps
)
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
,
num_inference_steps
=
self
.
num_inference_steps
)
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
...
...
src/diffusers/schedulers/scheduling_lms_discrete.py
View file @
e97a633b
...
@@ -288,7 +288,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -288,7 +288,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
log_sigmas
=
np
.
log
(
sigmas
)
log_sigmas
=
np
.
log
(
sigmas
)
sigmas
=
np
.
interp
(
timesteps
,
np
.
arange
(
0
,
len
(
sigmas
)),
sigmas
)
sigmas
=
np
.
interp
(
timesteps
,
np
.
arange
(
0
,
len
(
sigmas
)),
sigmas
)
if
self
.
use_karras_sigmas
:
if
self
.
config
.
use_karras_sigmas
:
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
)
sigmas
=
self
.
_convert_to_karras
(
in_sigmas
=
sigmas
)
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
timesteps
=
np
.
array
([
self
.
_sigma_to_t
(
sigma
,
log_sigmas
)
for
sigma
in
sigmas
])
...
...
tests/models/unets/test_models_unet_2d_condition.py
View file @
e97a633b
...
@@ -782,7 +782,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
...
@@ -782,7 +782,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
# update inputs_dict for ip-adapter
# update inputs_dict for ip-adapter
batch_size
=
inputs_dict
[
"encoder_hidden_states"
].
shape
[
0
]
batch_size
=
inputs_dict
[
"encoder_hidden_states"
].
shape
[
0
]
# for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
# for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
image_embeds
=
floats_tensor
((
batch_size
,
1
,
model
.
cross_attention_dim
)).
to
(
torch_device
)
image_embeds
=
floats_tensor
((
batch_size
,
1
,
model
.
config
.
cross_attention_dim
)).
to
(
torch_device
)
inputs_dict
[
"added_cond_kwargs"
]
=
{
"image_embeds"
:
[
image_embeds
]}
inputs_dict
[
"added_cond_kwargs"
]
=
{
"image_embeds"
:
[
image_embeds
]}
# make ip_adapter_1 and ip_adapter_2
# make ip_adapter_1 and ip_adapter_2
...
@@ -854,7 +854,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
...
@@ -854,7 +854,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
# update inputs_dict for ip-adapter
# update inputs_dict for ip-adapter
batch_size
=
inputs_dict
[
"encoder_hidden_states"
].
shape
[
0
]
batch_size
=
inputs_dict
[
"encoder_hidden_states"
].
shape
[
0
]
# for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim]
# for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim]
image_embeds
=
floats_tensor
((
batch_size
,
1
,
1
,
model
.
cross_attention_dim
)).
to
(
torch_device
)
image_embeds
=
floats_tensor
((
batch_size
,
1
,
1
,
model
.
config
.
cross_attention_dim
)).
to
(
torch_device
)
inputs_dict
[
"added_cond_kwargs"
]
=
{
"image_embeds"
:
[
image_embeds
]}
inputs_dict
[
"added_cond_kwargs"
]
=
{
"image_embeds"
:
[
image_embeds
]}
# make ip_adapter_1 and ip_adapter_2
# make ip_adapter_1 and ip_adapter_2
...
...
tests/others/test_config.py
View file @
e97a633b
...
@@ -272,17 +272,17 @@ class ConfigTester(unittest.TestCase):
...
@@ -272,17 +272,17 @@ class ConfigTester(unittest.TestCase):
# now loading it with SampleObject2 should put f into `_use_default_values`
# now loading it with SampleObject2 should put f into `_use_default_values`
config
=
SampleObject2
.
from_config
(
tmpdirname
)
config
=
SampleObject2
.
from_config
(
tmpdirname
)
assert
"f"
in
config
.
_use_default_values
assert
"f"
in
config
.
config
.
_use_default_values
assert
config
.
f
==
[
1
,
3
]
assert
config
.
config
.
f
==
[
1
,
3
]
# now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value
# now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value
# **BECAUSE** it is part of `config._use_default_values`
# **BECAUSE** it is part of `config.
config.
_use_default_values`
new_config
=
SampleObject4
.
from_config
(
config
.
config
)
new_config
=
SampleObject4
.
from_config
(
config
.
config
)
assert
new_config
.
f
==
[
5
,
4
]
assert
new_config
.
config
.
f
==
[
5
,
4
]
config
.
config
.
_use_default_values
.
pop
()
config
.
config
.
_use_default_values
.
pop
()
new_config_2
=
SampleObject4
.
from_config
(
config
.
config
)
new_config_2
=
SampleObject4
.
from_config
(
config
.
config
)
assert
new_config_2
.
f
==
[
1
,
3
]
assert
new_config_2
.
config
.
f
==
[
1
,
3
]
# Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5]
# Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5]
assert
new_config_2
.
e
==
[
1
,
3
]
assert
new_config_2
.
config
.
e
==
[
1
,
3
]
tests/pipelines/dance_diffusion/test_dance_diffusion.py
View file @
e97a633b
...
@@ -137,7 +137,7 @@ class PipelineIntegrationTests(unittest.TestCase):
...
@@ -137,7 +137,7 @@ class PipelineIntegrationTests(unittest.TestCase):
audio_slice
=
audio
[
0
,
-
3
:,
-
3
:]
audio_slice
=
audio
[
0
,
-
3
:,
-
3
:]
assert
audio
.
shape
==
(
1
,
2
,
pipe
.
unet
.
sample_size
)
assert
audio
.
shape
==
(
1
,
2
,
pipe
.
unet
.
config
.
sample_size
)
expected_slice
=
np
.
array
([
-
0.0192
,
-
0.0231
,
-
0.0318
,
-
0.0059
,
0.0002
,
-
0.0020
])
expected_slice
=
np
.
array
([
-
0.0192
,
-
0.0231
,
-
0.0318
,
-
0.0059
,
0.0002
,
-
0.0020
])
assert
np
.
abs
(
audio_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
audio_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
...
@@ -155,7 +155,7 @@ class PipelineIntegrationTests(unittest.TestCase):
...
@@ -155,7 +155,7 @@ class PipelineIntegrationTests(unittest.TestCase):
audio_slice
=
audio
[
0
,
-
3
:,
-
3
:]
audio_slice
=
audio
[
0
,
-
3
:,
-
3
:]
assert
audio
.
shape
==
(
1
,
2
,
pipe
.
unet
.
sample_size
)
assert
audio
.
shape
==
(
1
,
2
,
pipe
.
unet
.
config
.
sample_size
)
expected_slice
=
np
.
array
([
-
0.0367
,
-
0.0488
,
-
0.0771
,
-
0.0525
,
-
0.0444
,
-
0.0341
])
expected_slice
=
np
.
array
([
-
0.0367
,
-
0.0488
,
-
0.0771
,
-
0.0525
,
-
0.0444
,
-
0.0341
])
assert
np
.
abs
(
audio_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
audio_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment