unet_2d_condition.py 60.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
Patrick von Platen's avatar
Patrick von Platen committed
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
from .activations import get_activation
25
26
27
28
29
30
31
from .attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
YiYi Xu's avatar
YiYi Xu committed
32
33
from .embeddings import (
    GaussianFourierProjection,
YiYi Xu's avatar
YiYi Xu committed
34
35
36
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
37
    PositionNet,
YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
44
from .modeling_utils import ModelMixin
45
from .unet_2d_blocks import (
46
    UNetMidBlock2D,
47
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
48
    UNetMidBlock2DSimpleCrossAttn,
49
50
51
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
52
53


54
55
56
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


57
58
59
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
60
61
    The output of [`UNet2DConditionModel`].

62
63
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
64
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
65
66
    """

67
    sample: torch.FloatTensor = None
68
69


70
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
71
    r"""
Steven Liu's avatar
Steven Liu committed
72
73
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
Kashif Rasul's avatar
Kashif Rasul committed
74

Steven Liu's avatar
Steven Liu committed
75
76
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
Kashif Rasul's avatar
Kashif Rasul committed
77
78

    Parameters:
79
80
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
81
82
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
83
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
84
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
85
86
87
88
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
89
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
90
            Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
Steven Liu's avatar
Steven Liu committed
91
92
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
Kashif Rasul's avatar
Kashif Rasul committed
93
            The tuple of upsample blocks to use.
94
95
96
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
97
98
99
100
101
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
102
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Kashif Rasul's avatar
Kashif Rasul committed
103
104
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
105
            If `None`, normalization and activation layers is skipped in post-processing.
Kashif Rasul's avatar
Kashif Rasul committed
106
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
107
108
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
109
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
110
111
112
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
113
114
115
116
117
       reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
            blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
118
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
119
120
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
121
122
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
123
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
Kashif Rasul's avatar
Kashif Rasul committed
124
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
125
126
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
127
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
128
129
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
130
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
131
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
132
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
133
134
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
135
136
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
137
        num_class_embeds (`int`, *optional*, defaults to `None`):
138
139
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
140
        time_embedding_type (`str`, *optional*, defaults to `positional`):
141
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
142
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
143
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
144
145
146
147
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
148
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
149
150
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
151
152
153
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
        *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
        *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
154
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
155
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
156
157
158
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
159
160
161
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
Kashif Rasul's avatar
Kashif Rasul committed
162
163
    """

164
165
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
169
170
171
172
173
174
175
176
177
178
179
180
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
181
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
182
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
183
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
184
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
185
        layers_per_block: Union[int, Tuple[int]] = 2,
Sid Sahai's avatar
Sid Sahai committed
186
187
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
188
        dropout: float = 0.0,
Sid Sahai's avatar
Sid Sahai committed
189
        act_fn: str = "silu",
190
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
191
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
192
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
193
194
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
William Berman's avatar
William Berman committed
195
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
196
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
197
        attention_head_dim: Union[int, Tuple[int]] = 8,
198
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
199
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
200
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
201
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
202
        addition_embed_type: Optional[str] = None,
203
        addition_time_embed_dim: Optional[int] = None,
204
        num_class_embeds: Optional[int] = None,
205
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
206
        resnet_time_scale_shift: str = "default",
207
208
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
209
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
210
        time_embedding_dim: Optional[int] = None,
211
        time_embedding_act_fn: Optional[str] = None,
212
213
214
215
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
216
        projection_class_embeddings_input_dim: Optional[int] = None,
217
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
218
        class_embeddings_concat: bool = False,
219
        mid_block_only_cross_attention: Optional[bool] = None,
220
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
221
        addition_embed_type_num_heads=64,
Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
    ):
        super().__init__()

        self.sample_size = sample_size

227
228
229
230
231
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

232
233
234
235
236
237
238
239
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

256
257
258
259
260
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
261
262
263
264
265
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
266
267
268
269
270
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

271
272
273
274
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )
275
276
277
278
        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
279

Patrick von Platen's avatar
Patrick von Platen committed
280
        # input
281
282
283
284
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
285
286

        # time
287
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
288
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
289
290
291
292
293
294
295
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
296
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
297
298
299
300
301

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
302
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
303
            )
Patrick von Platen's avatar
Patrick von Platen committed
304

305
306
307
308
309
310
311
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
312

YiYi Xu's avatar
YiYi Xu committed
313
314
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
315
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
316
317
318
319
320
321
322
323
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
324
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
325
326
327
328
329
330
331
332
333
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
334
335
336
337
338
339
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
340
341
342
343
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
344
345
346
        else:
            self.encoder_hid_proj = None

347
        # class embedding
Will Berman's avatar
Will Berman committed
348
        if class_embed_type is None and num_class_embeds is not None:
349
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
350
        elif class_embed_type == "timestep":
351
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
352
353
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
354
355
356
357
358
359
360
361
362
363
364
365
366
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
367
368
369
370
371
372
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
373
374
        else:
            self.class_embedding = None
375

Patrick von Platen's avatar
Patrick von Platen committed
376
377
378
379
380
381
382
383
384
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
385
386
387
388
389
390
391
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
392
393
394
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
395
396
397
398
399
400
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
401
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
402
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
403

404
405
406
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
407
            self.time_embed_act = get_activation(time_embedding_act_fn)
408

Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

412
        if isinstance(only_cross_attention, bool):
413
414
415
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

416
417
            only_cross_attention = [only_cross_attention] * len(down_block_types)

418
419
420
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

421
422
423
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
424
425
426
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
427
428
429
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

430
431
432
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

433
434
435
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
436
437
438
439
440
441
442
443
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
447
448
449
450
451
452
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
453
                num_layers=layers_per_block[i],
454
                transformer_layers_per_block=transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
455
456
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
457
                temb_channels=blocks_time_embed_dim,
Patrick von Platen's avatar
Patrick von Platen committed
458
459
460
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
461
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
462
                cross_attention_dim=cross_attention_dim[i],
463
                num_attention_heads=num_attention_heads[i],
Patrick von Platen's avatar
Patrick von Platen committed
464
                downsample_padding=downsample_padding,
465
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
466
                use_linear_projection=use_linear_projection,
467
                only_cross_attention=only_cross_attention[i],
468
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
469
                resnet_time_scale_shift=resnet_time_scale_shift,
470
                attention_type=attention_type,
471
472
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
473
                cross_attention_norm=cross_attention_norm,
474
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
475
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
479
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
480
481
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
482
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
483
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
484
                temb_channels=blocks_time_embed_dim,
485
                dropout=dropout,
Will Berman's avatar
Will Berman committed
486
487
488
489
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
490
                cross_attention_dim=cross_attention_dim[-1],
491
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
492
493
494
495
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
496
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
497
498
499
500
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
501
                temb_channels=blocks_time_embed_dim,
502
                dropout=dropout,
Will Berman's avatar
Will Berman committed
503
504
505
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
506
                cross_attention_dim=cross_attention_dim[-1],
507
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
508
509
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
510
                skip_time_act=resnet_skip_time_act,
511
                only_cross_attention=mid_block_only_cross_attention,
512
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
513
            )
514
515
516
517
518
519
520
521
522
523
524
525
526
        elif mid_block_type == "UNetMidBlock2D":
            self.mid_block = UNetMidBlock2D(
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                dropout=dropout,
                num_layers=0,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                add_attention=False,
            )
527
528
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
529
530
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
531

532
533
534
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
535
536
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
537
        reversed_num_attention_heads = list(reversed(num_attention_heads))
538
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
539
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
540
541
542
543
544
        reversed_transformer_layers_per_block = (
            list(reversed(transformer_layers_per_block))
            if reverse_transformer_layers_per_block is None
            else reverse_transformer_layers_per_block
        )
545
        only_cross_attention = list(reversed(only_cross_attention))
546

Patrick von Platen's avatar
Patrick von Platen committed
547
548
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
549
550
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
551
552
553
554
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

555
556
557
558
559
560
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
561
562
563

            up_block = get_up_block(
                up_block_type,
564
                num_layers=reversed_layers_per_block[i] + 1,
565
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
Patrick von Platen's avatar
Patrick von Platen committed
566
567
568
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
569
                temb_channels=blocks_time_embed_dim,
570
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
571
572
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
573
                resolution_idx=i,
574
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
575
                cross_attention_dim=reversed_cross_attention_dim[i],
576
                num_attention_heads=reversed_num_attention_heads[i],
577
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
578
                use_linear_projection=use_linear_projection,
579
                only_cross_attention=only_cross_attention[i],
580
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
581
                resnet_time_scale_shift=resnet_time_scale_shift,
582
                attention_type=attention_type,
583
584
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
585
                cross_attention_norm=cross_attention_norm,
586
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
587
                dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
588
589
590
591
592
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
593
594
595
596
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
597

598
            self.conv_act = get_activation(act_fn)
599

600
601
602
603
604
605
606
607
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
608

609
        if attention_type in ["gated", "gated-text-image"]:
610
611
612
613
614
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
615
616
617
618
619

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = PositionNet(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )
620

621
    @property
Patrick von Platen's avatar
Patrick von Platen committed
622
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
623
624
625
626
627
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
628
        # set recursively
629
630
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
631
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
632
633
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
634
635
636
637
638
639
640
641
642
643
644

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

645
646
647
    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
    ):
648
        r"""
Steven Liu's avatar
Steven Liu committed
649
650
        Sets the attention processor to use to compute attention.

651
        Parameters:
Steven Liu's avatar
Steven Liu committed
652
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
653
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
654
655
656
657
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
658
659
660
661
662
663
664
665
666
667
668

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
669
            if hasattr(module, "set_processor"):
670
                if not isinstance(processor, dict):
671
                    module.set_processor(processor, _remove_lora=_remove_lora)
672
                else:
673
                    module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
674

675
676
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
677

678
679
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
680

681
682
683
684
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
685
686
687
688
689
690
691
692
693
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

694
        self.set_attn_processor(processor, _remove_lora=True)
695

696
    def set_attention_slice(self, slice_size):
697
698
        r"""
        Enable sliced attention computation.
699

Steven Liu's avatar
Steven Liu committed
700
701
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
702

703
704
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
705
706
707
708
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
709
710
711
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
712
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
713
714
715
716
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
717
                fn_recursive_retrieve_sliceable_dims(child)
718
719
720

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
721
            fn_recursive_retrieve_sliceable_dims(module)
722

Alexander Pivovarov's avatar
Alexander Pivovarov committed
723
        num_sliceable_layers = len(sliceable_head_dims)
724
725
726
727
728
729
730

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
731
            slice_size = num_sliceable_layers * [1]
732

Alexander Pivovarov's avatar
Alexander Pivovarov committed
733
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
734
735
736
737
738
739

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
760

761
    def _set_gradient_checkpointing(self, module, value=False):
762
        if hasattr(module, "gradient_checkpointing"):
763
764
            module.gradient_checkpointing = value

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
    def enable_freeu(self, s1, s2, b1, b2):
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
794
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
795
796
                    setattr(upsample_block, k, None)

Patrick von Platen's avatar
Patrick von Platen committed
797
798
799
800
801
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
802
        class_labels: Optional[torch.Tensor] = None,
803
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
804
        attention_mask: Optional[torch.Tensor] = None,
805
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
806
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
807
808
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
809
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
810
        encoder_attention_mask: Optional[torch.Tensor] = None,
811
812
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
813
        r"""
Steven Liu's avatar
Steven Liu committed
814
815
        The [`UNet2DConditionModel`] forward method.

Kashif Rasul's avatar
Kashif Rasul committed
816
        Args:
Steven Liu's avatar
Steven Liu committed
817
818
819
820
821
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
842
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
843
844
845
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
Kashif Rasul's avatar
Kashif Rasul committed
846
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
847
848
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
849
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
850
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
851
852
853
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
854
            down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
855
856
                additional residuals to be added to UNet long skip connections from down blocks to up blocks for
                example from ControlNet side model(s)
857
858
859
860
            mid_block_additional_residual (`torch.Tensor`, *optional*):
                additional residual to be added to UNet mid block output, for example from ControlNet side model
            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
Kashif Rasul's avatar
Kashif Rasul committed
861
862
863

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
864
865
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
Kashif Rasul's avatar
Kashif Rasul committed
866
        """
867
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
868
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
869
870
871
872
873
874
875
876
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

877
878
879
880
881
        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break
882

883
884
885
886
887
888
889
890
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
891
        if attention_mask is not None:
892
893
894
895
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
896
897
898
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

899
900
901
902
903
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
904
905
906
907
908
909
910
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
911
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
912
913
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
914
            if isinstance(timestep, float):
915
916
917
918
919
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
920
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
921

922
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
923
        timesteps = timesteps.expand(sample.shape[0])
924

Patrick von Platen's avatar
Patrick von Platen committed
925
        t_emb = self.time_proj(timesteps)
926

927
        # `Timesteps` does not contain any weights and will always return f32 tensors
928
929
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
930
        t_emb = t_emb.to(dtype=sample.dtype)
931
932

        emb = self.time_embedding(t_emb, timestep_cond)
933
        aug_emb = None
Patrick von Platen's avatar
Patrick von Platen committed
934

Will Berman's avatar
Will Berman committed
935
        if self.class_embedding is not None:
936
937
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
938
939
940
941

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

942
943
944
945
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

946
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
947
948
949
950
951

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
952

Patrick von Platen's avatar
Patrick von Platen committed
953
954
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
955
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
956
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
957
958
959
960
961
962
963
964
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
965
        elif self.config.addition_embed_type == "text_time":
966
            # SDXL - style
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
1000
1001

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
1002

1003
1004
1005
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
1006
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
1007
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
1017
1018
1019
1020
1021
1022
1023
1024
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1025
1026
1027
1028
1029
1030
1031
1032
1033
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
            encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
1034
1035
1036
        # 2. pre-process
        sample = self.conv_in(sample)

1037
1038
1039
1040
1041
1042
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

Patrick von Platen's avatar
Patrick von Platen committed
1043
        # 3. down
1044
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1045
1046
1047
        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
Will Berman's avatar
Will Berman committed
1048
1049

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1050
1051
1052
1053
1054
1055
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
1059
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1060
1061
                       and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
Patrick von Platen's avatar
Patrick von Platen committed
1062
1063
                standard_warn=False,
            )
1064
1065
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True
Will Berman's avatar
Will Berman committed
1066

Patrick von Platen's avatar
Patrick von Platen committed
1067
1068
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
1069
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
1070
1071
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
1072
1073
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
Will Berman's avatar
Will Berman committed
1074

Patrick von Platen's avatar
Patrick von Platen committed
1075
                sample, res_samples = downsample_block(
1076
1077
1078
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1079
                    attention_mask=attention_mask,
1080
                    cross_attention_kwargs=cross_attention_kwargs,
1081
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
1082
                    **additional_residuals,
Patrick von Platen's avatar
Patrick von Platen committed
1083
1084
                )
            else:
1085
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1086
1087
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    sample += down_intrablock_additional_residuals.pop(0)
Will Berman's avatar
Will Berman committed
1088

Patrick von Platen's avatar
Patrick von Platen committed
1089
1090
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
1091
        if is_controlnet:
1092
1093
1094
1095
1096
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
1097
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
1098
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1099
1100
1101

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
1102
        # 4. mid
1103
        if self.mid_block is not None:
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
            if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = self.mid_block(sample, emb)

1116
1117
1118
            # To support T2I-Adapter-XL
            if (
                is_adapter
1119
1120
                and len(down_intrablock_additional_residuals) > 0
                and sample.shape == down_intrablock_additional_residuals[0].shape
1121
            ):
1122
                sample += down_intrablock_additional_residuals.pop(0)
Patrick von Platen's avatar
Patrick von Platen committed
1123

Will Berman's avatar
Will Berman committed
1124
        if is_controlnet:
1125
            sample = sample + mid_block_additional_residual
1126

Patrick von Platen's avatar
Patrick von Platen committed
1127
        # 5. up
1128
1129
1130
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
1131
1132
1133
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

1134
1135
1136
1137
1138
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1139
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
1140
1141
1142
1143
1144
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1145
                    cross_attention_kwargs=cross_attention_kwargs,
1146
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1147
                    attention_mask=attention_mask,
1148
                    encoder_attention_mask=encoder_attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
1149
1150
                )
            else:
1151
                sample = upsample_block(
1152
1153
1154
1155
1156
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
1157
                )
1158

Patrick von Platen's avatar
Patrick von Platen committed
1159
        # 6. post-process
1160
1161
1162
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
        sample = self.conv_out(sample)

1165
1166
        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
1167
            unscale_lora_layers(self, lora_scale)
1168

1169
1170
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
1171

1172
        return UNet2DConditionOutput(sample=sample)