scheduling_sde_ve.py 13 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import warnings
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22
23

import numpy as np
import torch

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
44
45


Patrick von Platen's avatar
Patrick von Platen committed
46
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
47
48
49
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

50
51
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

52
53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
55
    [`~ConfigMixin.from_config`] functions.
56

57
    Args:
58
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
59
60
61
62
63
64
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
65
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
66
67
68
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
        tensor_format (`str`): "np" or "pt" for the expected format of samples passed to the Scheduler.
Nathan Lambert's avatar
Nathan Lambert committed
69
70
    """

71
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
72
73
    def __init__(
        self,
74
75
76
77
78
79
80
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
        tensor_format: str = "pt",
Nathan Lambert's avatar
Nathan Lambert committed
81
    ):
82
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
83
84
        self.timesteps = None

85
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
86
87

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
88
89
        self.set_format(tensor_format=tensor_format)

90
    def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
91
92
93
94
95
96
97
98
99
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
100
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Nathan Lambert's avatar
Nathan Lambert committed
101
102
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
103
            self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
104
        elif tensor_format == "pt":
105
            self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
106
107
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
108

109
110
111
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
            sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
126
127
128
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
129
        if self.timesteps is None:
130
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
131

Nathan Lambert's avatar
Nathan Lambert committed
132
133
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
134
135
            self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
136
        elif tensor_format == "pt":
137
138
            self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
139
140
141
142
143
144
145
146
147
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
148
149
150
                timesteps == 0,
                torch.zeros_like(t.to(timesteps.device)),
                self.discrete_sigmas[timesteps - 1].to(timesteps.device),
Nathan Lambert's avatar
Nathan Lambert committed
151
152
153
154
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

155
    def set_seed(self, seed):
156
157
158
159
160
        warnings.warn(
            "The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
            " generator instead.",
            DeprecationWarning,
        )
161
162
163
164
165
166
167
168
169
170
171
172
173
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
174
        generator: Optional[torch.Generator] = None,
175
        return_dict: bool = True,
176
        **kwargs,
177
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
178
        """
179
180
181
182
183
184
185
186
187
188
189
190
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
191
192
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
193

Nathan Lambert's avatar
Nathan Lambert committed
194
        """
195
196
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
197

198
199
200
201
202
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

203
204
205
206
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
207

208
209
210
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

211
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
212
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
213
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
214
215
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

216
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
217
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
218
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
219
220

        #  equation 6: sample noise for the diffusion term of
221
        noise = self.randn_like(sample, generator=generator)
222
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
223
        # TODO is the variable diffusion the correct scaling term for the noise?
224
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
225

226
227
228
229
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
230
231
232
233
234

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
235
        generator: Optional[torch.Generator] = None,
236
        return_dict: bool = True,
237
        **kwargs,
238
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
239
        """
240
241
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
242
243
244
245
246
247
248
249
250

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
251
252
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
253

Nathan Lambert's avatar
Nathan Lambert committed
254
        """
255
256
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
257

258
259
260
261
262
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
263
264
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
265
        noise = self.randn_like(sample, generator=generator)
266

267
268
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
269
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
270
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
271
272
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
273

274
275
276
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
277

278
279
280
281
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
282
283
284

    def __len__(self):
        return self.config.num_train_timesteps