scheduling_pndm.py 16.9 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from .scheduling_utils import SchedulerMixin, SchedulerOutput
25
26
27
28


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

32
33
34
35
36
37
38
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
39
                     prevent singularities.
40
41
42

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
43
    """
44

45
46
47
48
49
50
51
52
53
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56


class PNDMScheduler(SchedulerMixin, ConfigMixin):
57
58
59
60
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

61
62
63
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
64
    [`~ConfigMixin.from_config`] functions.
65

66
67
68
69
70
71
72
73
74
    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
75
76
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
77
78
79
80
81
82
83
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.

    """

84
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
85
86
    def __init__(
        self,
Partho's avatar
Partho committed
87
88
89
90
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
91
        trained_betas: Optional[np.ndarray] = None,
Partho's avatar
Partho committed
92
93
        tensor_format: str = "pt",
        skip_prk_steps: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
94
    ):
95
96
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
Patrick von Platen's avatar
Patrick von Platen committed
97
        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
98
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
99
100
101
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
102
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
103
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
104
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
108
109
110
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

Patrick von Platen's avatar
Patrick von Platen committed
111
112
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
113
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
117
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
118
        self.counter = 0
119
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
120
121
        self.ets = []

122
123
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
124
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
125
        self._offset = 0
126
127
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
128
        self.timesteps = None
129
130
131

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
132

Partho's avatar
Partho committed
133
    def set_timesteps(self, num_inference_steps: int, offset: int = 0) -> torch.FloatTensor:
134
135
136
137
138
139
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
Nathan Lambert's avatar
Nathan Lambert committed
140
141
            offset (`int`):
                optional value to shift timestep values up by. A value of 1 is used in stable diffusion for inference.
142
        """
143
        self.num_inference_steps = num_inference_steps
144
145
146
147
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().tolist()
148
        self._offset = offset
149
        self._timesteps = np.array([t + self._offset for t in self._timesteps])
150
151
152
153
154

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
155
            self.prk_timesteps = np.array([])
156
157
158
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
159
160
161
162
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
163
164
165
166
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
167

168
        self.timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
Patrick von Platen's avatar
Patrick von Platen committed
169

170
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
171
        self.counter = 0
172
        self.set_format(tensor_format=self.tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
173

Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177
178
    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
179
180
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
181
182
183
184
185
186
187
188
189
190
191
192
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
193

194
        Returns:
195
196
197
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
198
199

        """
200
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
201
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
202
        else:
203
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
204

205
206
    def step_prk(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
207
        model_output: Union[torch.FloatTensor, np.ndarray],
208
209
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
210
211
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
212
213
214
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
215
216
217
218
219
220
221
222
223

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
224
225
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
226

Nathan Lambert's avatar
Nathan Lambert committed
227
        """
228
229
230
231
232
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
        prev_timestep = max(timestep - diff_to_prev, self.prk_timesteps[-1])
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
236

Patrick von Platen's avatar
Patrick von Platen committed
237
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
238
239
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
240
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
241
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
242
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
243
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
244
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
245
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
246
247
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
248

Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
252
253
254
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

255
256
257
258
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
259

260
261
    def step_plms(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
262
        model_output: Union[torch.FloatTensor, np.ndarray],
263
264
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
265
266
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
267
268
269
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
270
271
272
273
274
275
276
277
278

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
279
280
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
281

Nathan Lambert's avatar
Nathan Lambert committed
282
        """
283
284
285
286
287
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

288
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
296
        prev_timestep = max(timestep - self.config.num_train_timesteps // self.num_inference_steps, 0)
Patrick von Platen's avatar
Patrick von Platen committed
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        if self.counter != 1:
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
317

Patrick von Platen's avatar
Patrick von Platen committed
318
319
320
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

321
322
323
324
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
325

Patrick von Platen's avatar
Patrick von Platen committed
326
    def _get_prev_sample(self, sample, timestep, timestep_prev, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
330
331
332
333
334
335
336
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
337
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
338
        # prev_sample -> x_(t−δ)
339
340
        alpha_prod_t = self.alphas_cumprod[timestep + 1 - self._offset]
        alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1 - self._offset]
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
346
347
348
349
350
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
351
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
356
357
358
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
359
360

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
361

Partho's avatar
Partho committed
362
363
364
365
366
367
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> torch.Tensor:
368
369
        if self.tensor_format == "pt":
            timesteps = timesteps.to(self.alphas_cumprod.device)
370
371
372
373
374
375
376
377
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
378
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
379
        return self.config.num_train_timesteps