test_modeling_utils.py 23.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
import pytest
25
26
27
28
29
30
31
32
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
33
    GLIDESuperResUNetModel,
34
    GLIDETextToImageUNetModel,
35
36
    LatentDiffusion,
    PNDMScheduler,
patil-suraj's avatar
patil-suraj committed
37
    UNetGradTTSModel,
anton-l's avatar
anton-l committed
38
39
    UNetLDMModel,
    UNetModel,
40
)
41
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
42
from diffusers.pipeline_utils import DiffusionPipeline
43
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
44
from diffusers.testing_utils import floats_tensor, slow, torch_device
45
46


Patrick von Platen's avatar
Patrick von Platen committed
47
torch.backends.cuda.matmul.allow_tf32 = False
48
49


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
67
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

87
88
89
90
91
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
92
class ModelTesterMixin:
93
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
94
95
96
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
97
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
98
        model.eval()
99
100
101

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
102
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
103
            new_model.to(torch_device)
104

patil-suraj's avatar
patil-suraj committed
105
106
107
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
108

patil-suraj's avatar
patil-suraj committed
109
110
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
111

patil-suraj's avatar
patil-suraj committed
112
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
127

patil-suraj's avatar
patil-suraj committed
128
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
129
130
131
132
133
134
135
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
136

patil-suraj's avatar
patil-suraj committed
137
138
139
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
140

patil-suraj's avatar
patil-suraj committed
141
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
142
143
144
145
146
147
148
149
150
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
151

patil-suraj's avatar
patil-suraj committed
152
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
153
154
155
156
157
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
158

patil-suraj's avatar
patil-suraj committed
159
160
161
162
163
164
165
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
166

patil-suraj's avatar
patil-suraj committed
167
168
169
170
171
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
172

patil-suraj's avatar
patil-suraj committed
173
174
175
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
176

patil-suraj's avatar
patil-suraj committed
177
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
178
179

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
180
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
181

patil-suraj's avatar
patil-suraj committed
182
183
184
185
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
186
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
187
188
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
189

patil-suraj's avatar
patil-suraj committed
190
191
192
193
194
195
196
197
198
199
200
201
202

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
203
        return {"x": noise, "timesteps": time_step}
204

patil-suraj's avatar
patil-suraj committed
205
206
207
    @property
    def get_input_shape(self):
        return (3, 32, 32)
208

patil-suraj's avatar
patil-suraj committed
209
210
211
    @property
    def get_output_shape(self):
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
212
213
214
215
216
217
218
219
220
221
222

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
223

patil-suraj's avatar
patil-suraj committed
224
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
225
226
227
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
228

patil-suraj's avatar
patil-suraj committed
229
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
230
231
232
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
233

patil-suraj's avatar
patil-suraj committed
234
235
236
237
238
239
240
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
241

patil-suraj's avatar
patil-suraj committed
242
243
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
244

patil-suraj's avatar
patil-suraj committed
245
246
        with torch.no_grad():
            output = model(noise, time_step)
247

patil-suraj's avatar
patil-suraj committed
248
249
250
251
252
253
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([ 0.2891, -0.1899,  0.2595, -0.6214,  0.0968, -0.2622,  0.4688,  0.1311, 0.0053])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

254

patil-suraj's avatar
patil-suraj committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GLIDESuperResUNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        torch_device = "cpu"

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
272

patil-suraj's avatar
patil-suraj committed
273
274
275
    @property
    def get_input_shape(self):
        return (3, 32, 32)
276

patil-suraj's avatar
patil-suraj committed
277
278
279
    @property
    def get_output_shape(self):
        return (6, 32, 32)
280

patil-suraj's avatar
patil-suraj committed
281
282
283
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
284
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
285
286
287
288
289
290
291
292
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
293
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
308

patil-suraj's avatar
patil-suraj committed
309
310
311
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
312

patil-suraj's avatar
patil-suraj committed
313
    def test_from_pretrained_hub(self):
314
315
316
        model, loading_info = GLIDESuperResUNetModel.from_pretrained(
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
317
318
319
320
321
322
323
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
324

patil-suraj's avatar
patil-suraj committed
325
326
327
328
329
330
    def test_output_pretrained(self):
        model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
331

332
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
333
334
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
335

patil-suraj's avatar
patil-suraj committed
336
337
        with torch.no_grad():
            output = model(noise, time_step, low_res)
338

patil-suraj's avatar
patil-suraj committed
339
340
341
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
342
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
343
344
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
345

anton-l's avatar
anton-l committed
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class GLIDETextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GLIDETextToImageUNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        torch_device = "cpu"

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "transformer_out": emb}

    @property
    def get_input_shape(self):
        return (3, 32, 32)

    @property
    def get_output_shape(self):
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
        model, loading_info = GLIDETextToImageUNetModel.from_pretrained(
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = GLIDETextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([  2.7766, -10.3558, -14.9149,  -0.9376, -14.9175, -17.7679,  -5.5565, -12.9521, -12.9845])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetLDMModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
    def get_input_shape(self):
        return (4, 32, 32)

    @property
    def get_output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "model_channels": 32,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
            "channel_mult": (1, 2),
            "num_heads": 2,
            "conv_resample": True,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
479

patil-suraj's avatar
patil-suraj committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    def test_from_pretrained_hub(self):
        model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
511

patil-suraj's avatar
patil-suraj committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetGradTTSModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 32
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        condition = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        mask = floats_tensor((batch_size, 1, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"x": noise, "timesteps": time_step, "mu": condition, "mask": mask}

    @property
    def get_input_shape(self):
        return (4, 32, 16)

    @property
    def get_output_shape(self):
        return (4, 32, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "dim": 64,
            "groups": 4,
            "dim_mults": (1, 2),
            "n_feats": 32,
            "pe_scale": 1000,
            "n_spks": 1,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
547

patil-suraj's avatar
patil-suraj committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    def test_from_pretrained_hub(self):
        model, loading_info = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
anton-l's avatar
anton-l committed
565

patil-suraj's avatar
patil-suraj committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        num_features = model.config.n_feats
        seq_len = 16
        noise = torch.randn((1, num_features, seq_len))
        condition = torch.randn((1, num_features, seq_len))
        mask = torch.randn((1, 1, seq_len))
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step, condition, mask)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0690, -0.0531,  0.0633, -0.0660, -0.0541,  0.0650, -0.0656, -0.0555, 0.0617])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


584
585
586
587
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
588
        schedular = DDPMScheduler(timesteps=10)
589
590
591
592
593
594

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
595
596

        generator = torch.manual_seed(0)
597

patil-suraj's avatar
patil-suraj committed
598
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
599
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
600
        new_image = new_ddpm(generator=generator)
601
602
603
604
605
606
607
608
609
610
611
612
613

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
614
        generator = torch.manual_seed(0)
615

patil-suraj's avatar
patil-suraj committed
616
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
617
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
618
        new_image = ddpm_from_hub(generator=generator)
619
620

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
621
622
623
624
625
626

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
627
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
628
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
629
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
630
631

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
632
633
634
635
636
637
638
639
640
641
642
643
644
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
645
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
646
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
647
648

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
654
655
656
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
657
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
658

Patrick von Platen's avatar
Patrick von Platen committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
678
679
680
681
682
683
684
685
686
687
688
689
690
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
691
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
692

anton-l's avatar
anton-l committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

708
709
710
711
712
713
714
715
716
717
718
719
720
721
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
722
            _ = DiffusionPipeline.from_pretrained(tmpdirname)