test_pipelines.py 54.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionOnnxPipeline,
44
    StableDiffusionPipeline,
45
    UNet2DConditionModel,
46
    UNet2DModel,
47
    VQModel,
48
49
)
from diffusers.pipeline_utils import DiffusionPipeline
50
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
51
from diffusers.testing_utils import floats_tensor, load_image, slow, torch_device
52
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME
53
54
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
55
56
57
58
59


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
60
61
62
63
64
65
66
67
68
69
70
71
72
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
73
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
74
75
76
77
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
78
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
79
80
81
82
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


83
class PipelineFastTests(unittest.TestCase):
84
85
86
87
88
89
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
173
            return images, [False] * len(images)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
194
        scheduler = DDIMScheduler()
195
196
197

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
198
        ddpm.set_progress_bar_config(disable=None)
199

200
201
202
203
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

204
        generator = torch.manual_seed(0)
205
206
207
208
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
209
210

        image_slice = image[0, -3:, -3:, -1]
211
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
212
213
214
215
216

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
217
218
219
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
220
221
222

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
223
        scheduler = PNDMScheduler()
224
225
226

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
227
        pndm.set_progress_bar_config(disable=None)
228
229
230
231

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

232
        generator = torch.manual_seed(0)
233
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
234
235

        image_slice = image[0, -3:, -3:, -1]
236
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
237
238
239
240

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
241
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
242
243
244

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
245
        scheduler = DDIMScheduler()
246
247
248
249
250
251
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
252
        ldm.set_progress_bar_config(disable=None)
253
254

        prompt = "A painting of a squirrel eating a burger"
255
256
257
258
259
260
261
262

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy")[
                "sample"
            ]

263
264
265
266
267
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

268
269
270
271
272
273
274
275
276
277
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

278
        image_slice = image[0, -3:, -3:, -1]
279
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
280
281
282
283

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
284
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
285
286

    def test_stable_diffusion_ddim(self):
287
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
311
        sd_pipe = sd_pipe.to(device)
312
        sd_pipe.set_progress_bar_config(disable=None)
313
314

        prompt = "A painting of a squirrel eating a burger"
315

316
317
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
318
        image = output.images
319

320
321
322
323
324
325
326
327
328
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
329
330

        image_slice = image[0, -3:, -3:, -1]
331
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
332
333
334

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
335

336
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
337
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            height=536,
            width=536,
            num_inference_steps=2,
            output_type="np",
        )
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 134, 134, 3)
        expected_slice = np.array([0.7834, 0.5488, 0.5781, 0.46, 0.3609, 0.5369, 0.542, 0.4855, 0.5557])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

388
    def test_stable_diffusion_pndm(self):
389
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
390
        unet = self.dummy_cond_unet
391
        scheduler = PNDMScheduler(skip_prk_steps=True)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
406
        sd_pipe = sd_pipe.to(device)
407
        sd_pipe.set_progress_bar_config(disable=None)
408
409

        prompt = "A painting of a squirrel eating a burger"
410
411
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
412

413
414
415
416
417
418
419
420
421
422
423
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
424
425

        image_slice = image[0, -3:, -3:, -1]
426
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
427
428
429
430

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
431
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
432
433

    def test_stable_diffusion_k_lms(self):
434
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
451
        sd_pipe = sd_pipe.to(device)
452
        sd_pipe.set_progress_bar_config(disable=None)
453
454

        prompt = "A painting of a squirrel eating a burger"
455
456
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
457

458
459
460
461
462
463
464
465
466
467
468
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
469
470

        image_slice = image[0, -3:, -3:, -1]
471
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
472
473
474
475

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
476
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
477

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

510
511
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
512
        scheduler = ScoreSdeVeScheduler()
513
514
515

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
516
        sde_ve.set_progress_bar_config(disable=None)
517

518
519
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
520

521
522
523
524
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
525
526

        image_slice = image[0, -3:, -3:, -1]
527
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
528
529
530
531

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
532
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
533
534
535

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
536
        scheduler = DDIMScheduler()
537
538
539
540
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
541
        ldm.set_progress_bar_config(disable=None)
542

543
544
545
546
547
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

548
        generator = torch.manual_seed(0)
549
550
551
552
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
553
554

        image_slice = image[0, -3:, -3:, -1]
555
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
556
557
558
559

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
560
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
561
562
563

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
564
        scheduler = KarrasVeScheduler()
565
566
567

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
568
        pipe.set_progress_bar_config(disable=None)
569
570

        generator = torch.manual_seed(0)
571
572
573
574
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
575
576

        image_slice = image[0, -3:, -3:, -1]
577
578
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

579
580
581
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
582
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
583
584

    def test_stable_diffusion_img2img(self):
585
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
586
        unet = self.dummy_cond_unet
587
        scheduler = PNDMScheduler(skip_prk_steps=True)
588
589
590
591
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

592
        init_image = self.dummy_image.to(device)
593
594
595
596
597
598
599
600
601
602
603

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
604
        sd_pipe = sd_pipe.to(device)
605
        sd_pipe.set_progress_bar_config(disable=None)
606
607

        prompt = "A painting of a squirrel eating a burger"
608
609
610
611
612
613
614
615
616
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
617

618
619
620
621
622
623
624
625
626
627
628
629
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
630
631

        image_slice = image[0, -3:, -3:, -1]
632
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
633
634
635
636

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
637
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
673
        image = output.images
674

675
676
677
678
679
680
681
682
683
684
685
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
686
687

        image_slice = image[0, -3:, -3:, -1]
688
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
689
690
691
692

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
693
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
694

695
    def test_stable_diffusion_inpaint(self):
696
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
697
        unet = self.dummy_cond_unet
698
        scheduler = PNDMScheduler(skip_prk_steps=True)
699
700
701
702
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

703
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
704
705
706
707
708
709
710
711
712
713
714
715
716
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
717
        sd_pipe = sd_pipe.to(device)
718
        sd_pipe.set_progress_bar_config(disable=None)
719
720

        prompt = "A painting of a squirrel eating a burger"
721
722
723
724
725
726
727
728
729
730
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
731

732
733
734
735
736
737
738
739
740
741
742
743
744
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
745
746

        image_slice = image[0, -3:, -3:, -1]
747
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
748
749
750
751

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
752
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
753
754


755
class PipelineTesterMixin(unittest.TestCase):
756
757
758
759
760
761
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

783
784
785
786
787
788
789
    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, [False] * len(images)

        return check

790
791
792
793
794
795
796
797
798
799
800
801
802
803
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
804
        ddpm.to(torch_device)
805
        ddpm.set_progress_bar_config(disable=None)
806
807
808
809

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
810
            new_ddpm.to(torch_device)
811
812

        generator = torch.manual_seed(0)
813
        image = ddpm(generator=generator, output_type="numpy").images
814

815
        generator = generator.manual_seed(0)
816
        new_image = new_ddpm(generator=generator, output_type="numpy").images
817
818
819
820
821
822
823

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

824
        scheduler = DDPMScheduler(num_train_timesteps=10)
825

826
827
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
828
        ddpm.set_progress_bar_config(disable=None)
829
830
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
831
        ddpm_from_hub.set_progress_bar_config(disable=None)
832
833

        generator = torch.manual_seed(0)
834
        image = ddpm(generator=generator, output_type="numpy").images
835

836
        generator = generator.manual_seed(0)
837
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
838
839
840
841
842
843
844

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

845
846
        scheduler = DDPMScheduler(num_train_timesteps=10)

847
848
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
849
850
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
851
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
852

853
854
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
855
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
856
857

        generator = torch.manual_seed(0)
858
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
859

860
        generator = generator.manual_seed(0)
861
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
862
863
864
865
866
867
868
869

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
870
        pipe.to(torch_device)
871
        pipe.set_progress_bar_config(disable=None)
872
873

        generator = torch.manual_seed(0)
874
        images = pipe(generator=generator, output_type="numpy").images
875
876
877
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

878
        images = pipe(generator=generator, output_type="pil").images
879
880
881
882
883
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
884
        images = pipe(generator=generator).images
885
886
887
888
889
890
891
892
893
894
895
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
896
        ddpm.to(torch_device)
897
        ddpm.set_progress_bar_config(disable=None)
898
899

        generator = torch.manual_seed(0)
900
        image = ddpm(generator=generator, output_type="numpy").images
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
916
        ddpm.to(torch_device)
917
        ddpm.set_progress_bar_config(disable=None)
918
919

        generator = torch.manual_seed(0)
920
        image = ddpm(generator=generator, output_type="numpy").images
921
922
923
924
925
926
927
928
929
930
931
932

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
933
        scheduler = DDIMScheduler()
934
935

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
936
        ddim.to(torch_device)
937
        ddim.set_progress_bar_config(disable=None)
938
939

        generator = torch.manual_seed(0)
940
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
941
942
943
944
945
946
947
948
949
950
951
952

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
953
        scheduler = PNDMScheduler()
954
955

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
956
        pndm.to(torch_device)
957
        pndm.set_progress_bar_config(disable=None)
958
        generator = torch.manual_seed(0)
959
        image = pndm(generator=generator, output_type="numpy").images
960
961
962
963
964
965
966
967
968
969

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
970
        ldm.to(torch_device)
971
        ldm.set_progress_bar_config(disable=None)
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
988
        ldm.to(torch_device)
989
        ldm.set_progress_bar_config(disable=None)
990
991
992

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
993
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
994
995
996
997
998
999
1000
1001
1002
1003
1004

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
1005
1006
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
1007
        sd_pipe.set_progress_bar_config(disable=None)
1008
1009
1010
1011
1012
1013
1014
1015

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

1016
        image = output.images
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
1027
1028
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
1029
        sd_pipe.set_progress_bar_config(disable=None)
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
1045
        image = output.images
1046
1047
1048
1049

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1050
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
1051
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1052
1053
1054
1055
1056
1057
1058
1059
1060

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
1061
        sde_ve.to(torch_device)
1062
        sde_ve.set_progress_bar_config(disable=None)
1063

1064
1065
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
1066
1067
1068
1069
1070

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

1071
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
1072
1073
1074
1075
1076
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
1077
        ldm.to(torch_device)
1078
        ldm.set_progress_bar_config(disable=None)
1079
1080

        generator = torch.manual_seed(0)
1081
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1094
1095
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1096
1097

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1098
        ddpm.to(torch_device)
1099
        ddpm.set_progress_bar_config(disable=None)
1100
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1101
        ddim.to(torch_device)
1102
        ddim.set_progress_bar_config(disable=None)
1103
1104

        generator = torch.manual_seed(0)
1105
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1106
1107

        generator = torch.manual_seed(0)
1108
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1109
1110
1111
1112
1113
1114
1115
1116
1117

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1118
1119
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1120
1121

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1122
        ddpm.to(torch_device)
1123
        ddpm.set_progress_bar_config(disable=None)
1124

1125
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1126
        ddim.to(torch_device)
1127
        ddim.set_progress_bar_config(disable=None)
1128
1129

        generator = torch.manual_seed(0)
1130
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
1144
        scheduler = KarrasVeScheduler()
1145
1146

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1147
        pipe.to(torch_device)
1148
        pipe.set_progress_bar_config(disable=None)
1149
1150

        generator = torch.manual_seed(0)
1151
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1152
1153
1154

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
1155
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
1156
1157
1158
1159
1160
1161
1162
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
1163
        pipe.set_progress_bar_config(disable=None)
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1177
1178
1179

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        ).to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1220
1221
1222
1223
    def test_stable_diffusion_text2img_pipeline(self):
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/text2img/astronaut_riding_a_horse.png"
1224
        )
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
            use_auth_token=True,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
        image = output.images[0]
1242

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1259
1260

        model_id = "CompVis/stable-diffusion-v1-4"
1261
1262
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
1263
            safety_checker=self.dummy_safety_checker,
1264
1265
            use_auth_token=True,
        )
1266
        pipe.to(torch_device)
1267
        pipe.set_progress_bar_config(disable=None)
1268
        pipe.enable_attention_slicing()
1269
1270
1271
1272

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1273
1274
1275
1276
1277
1278
1279
1280
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1281
        image = output.images[0]
1282

1283
        assert image.shape == (512, 768, 3)
1284
1285
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1286
1287
1288

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1289
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1290
1291
1292
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
1293
        )
1294
1295
1296
1297
1298
1299
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape_k_lms.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1300
1301
1302
1303

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1304
1305
1306
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
1307
            safety_checker=self.dummy_safety_checker,
1308
1309
            use_auth_token=True,
        )
1310
1311
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1312
        pipe.enable_attention_slicing()
1313
1314
1315
1316

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1317
1318
1319
1320
1321
1322
1323
1324
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1325
        image = output.images[0]
1326

1327
        assert image.shape == (512, 768, 3)
1328
1329
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1330
1331
1332

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1333
    def test_stable_diffusion_inpaint_pipeline(self):
1334
1335
1336
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
1337
        )
1338
1339
1340
1341
1342
1343
1344
1345
1346
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1347
1348

        model_id = "CompVis/stable-diffusion-v1-4"
1349
1350
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
1351
            safety_checker=self.dummy_safety_checker,
1352
1353
            use_auth_token=True,
        )
1354
        pipe.to(torch_device)
1355
        pipe.set_progress_bar_config(disable=None)
1356
        pipe.enable_attention_slicing()
1357

1358
        prompt = "A red cat sitting on a park bench"
1359
1360

        generator = torch.Generator(device=torch_device).manual_seed(0)
1361
1362
1363
1364
1365
1366
1367
1368
1369
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench_k_lms.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=self.dummy_safety_checker,
            use_auth_token=True,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1417
        image = output.images[0]
1418

1419
1420
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2
1421
1422
1423

    @slow
    def test_stable_diffusion_onnx(self):
1424
1425
1426
        sd_pipe = StableDiffusionOnnxPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CUDAExecutionProvider", use_auth_token=True
        )
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=20, output_type="np")
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0385, 0.0252, 0.0234, 0.0287, 0.0358, 0.0287, 0.0276, 0.0235, 0.0010])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3