test_scheduler.py 75.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
hlky's avatar
hlky committed
15
import inspect
16
17
import json
import os
Patrick von Platen's avatar
Patrick von Platen committed
18
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
19
import unittest
20
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
23
import numpy as np
import torch
Will Berman's avatar
Will Berman committed
24
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
25

26
import diffusers
27
28
29
from diffusers import (
    DDIMScheduler,
    DDPMScheduler,
30
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
31
32
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
33
34
35
36
    IPNDMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    ScoreSdeVeScheduler,
Will Berman's avatar
Will Berman committed
37
    VQDiffusionScheduler,
38
    logging,
39
)
40
41
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
42
from diffusers.utils import deprecate, torch_device
43
from diffusers.utils.testing_utils import CaptureLogger
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48


torch.backends.cuda.matmul.allow_tf32 = False


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
class SchedulerObject(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


class SchedulerObject2(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SchedulerObject3(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


class SchedulerBaseTests(unittest.TestCase):
    def test_save_load_from_different_config(self):
        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_1 = SchedulerObject2.from_config(config)

            # now save a config parameter that is not expected
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_2 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_3 = SchedulerObject2.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject2
        assert new_obj_2.__class__ == SchedulerObject
        assert new_obj_3.__class__ == SchedulerObject2

        assert cap_logger_1.out == ""
        assert (
            cap_logger_2.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )
        assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out

    def test_save_load_compatible_schedulers(self):
        SchedulerObject2._compatibles = ["SchedulerObject"]
        SchedulerObject._compatibles = ["SchedulerObject2"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            # now save a config parameter that is expected by another class, but not origin class
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["f"] = [0, 0]
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj = SchedulerObject.from_config(config)

        assert new_obj.__class__ == SchedulerObject

        assert (
            cap_logger.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )

    def test_save_load_from_different_config_comp_schedulers(self):
        SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
        SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
        SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        setattr(diffusers, "SchedulerObject3", SchedulerObject3)
        logger = logging.get_logger("diffusers.configuration_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_1 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_2 = SchedulerObject2.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject3.load_config(tmpdirname)
                new_obj_3 = SchedulerObject3.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject
        assert new_obj_2.__class__ == SchedulerObject2
        assert new_obj_3.__class__ == SchedulerObject3

        assert cap_logger_1.out == ""
        assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
        assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"


Patrick von Platen's avatar
Patrick von Platen committed
212
class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
213
214
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
215
216

    @property
217
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
218
219
220
221
222
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

223
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
224

225
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
226
227

    @property
228
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
229
230
231
232
233
234
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
235
        sample = torch.arange(num_elems)
236
237
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
238
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
239

240
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
246
247
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250

        return model

Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

254
255
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
256
        for scheduler_class in self.scheduler_classes:
257
            # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
hlky's avatar
hlky committed
258
259
260
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
261
262
263
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
264
265
266
267
268
269
270
271
272
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
273
274
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
275
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
276

277
278
279
280
281
282
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
283
284
285
            # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
286
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
287
288
289

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
290
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
291

292
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
293
294
295
296
297

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

298
299
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
300
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
301
302
303
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
304
305
306
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
307
308
309
310
311
312
313
314
315
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
316
317
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
318
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
319

320
321
322
323
324
325
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
326
327
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
328
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
329
330
331

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
332
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
333

334
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
335

Patrick von Platen's avatar
Patrick von Platen committed
336
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
337
338
        kwargs = dict(self.forward_default_kwargs)

339
340
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
341
        for scheduler_class in self.scheduler_classes:
Will Berman's avatar
Will Berman committed
342
343
344
            timestep = 1
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
349
350
351
352
353
354
355
356
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
hlky's avatar
hlky committed
357

Patrick von Platen's avatar
Patrick von Platen committed
358
359
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
360
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
361

362
363
364
365
366
367
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
368
369
370
371
372
373
374
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
375

376
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    def test_compatibles(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            assert all(c is not None for c in scheduler.compatibles)

            for comp_scheduler_cls in scheduler.compatibles:
                comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
                assert comp_scheduler is not None

            new_scheduler = scheduler_class.from_config(comp_scheduler.config)

            new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
            scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}

            # make sure that configs are essentially identical
            assert new_scheduler_config == dict(scheduler.config)

            # make sure that only differences are for configs that are not in init
            init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
            assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()

    def test_from_pretrained(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.config == new_scheduler.config

Patrick von Platen's avatar
Patrick von Platen committed
414
415
416
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

417
418
        num_inference_steps = kwargs.pop("num_inference_steps", None)

hlky's avatar
hlky committed
419
420
421
        timestep_0 = 0
        timestep_1 = 1

Patrick von Platen's avatar
Patrick von Platen committed
422
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
423
424
425
426
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep_0 = float(timestep_0)
                timestep_1 = float(timestep_1)

Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
430
431
432
433
434
435
436
437
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep_0)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
438

439
440
441
442
443
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
444
445
            output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
446

447
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
448
449
            self.assertEqual(output_0.shape, output_1.shape)

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
478
        num_inference_steps = kwargs.pop("num_inference_steps", 50)
479

480
481
482
483
        timestep = 0
        if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
            timestep = 1

484
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
485
486
487
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)

488
489
490
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
491
492
493
494
495
496
497
498
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
499
500
501
502
503
504

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
505
506
507
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
508
            outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
509
510
511
512
513
514

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
515
516
517
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
518
            outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
519
520
521

            recursive_check(outputs_tuple, outputs_dict)

522
523
524
525
    def test_scheduler_public_api(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Will Berman's avatar
Will Berman committed
526
527
528
529
530
531
532
533
534
535
536

            if scheduler_class != VQDiffusionScheduler:
                self.assertTrue(
                    hasattr(scheduler, "init_noise_sigma"),
                    f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
                )
                self.assertTrue(
                    hasattr(scheduler, "scale_model_input"),
                    f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
                    " timestep)`",
                )
537
538
539
540
541
            self.assertTrue(
                hasattr(scheduler, "step"),
                f"{scheduler_class} does not implement a required class method `step(...)`",
            )

Will Berman's avatar
Will Berman committed
542
543
544
545
            if scheduler_class != VQDiffusionScheduler:
                sample = self.dummy_sample
                scaled_sample = scheduler.scale_model_input(sample, 0.0)
                self.assertEqual(sample.shape, scaled_sample.shape)
546

547
548
549
550
551
552
553
    def test_add_noise_device(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == IPNDMScheduler:
                # Skip until #990 is addressed
                continue
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
554
            scheduler.set_timesteps(100)
555
556
557
558
559
560

            sample = self.dummy_sample.to(torch_device)
            scaled_sample = scheduler.scale_model_input(sample, 0.0)
            self.assertEqual(sample.shape, scaled_sample.shape)

            noise = torch.randn_like(scaled_sample).to(torch_device)
561
            t = scheduler.timesteps[5][None]
562
563
564
            noised = scheduler.add_noise(scaled_sample, noise, t)
            self.assertEqual(noised.shape, scaled_sample.shape)

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    def test_deprecated_kwargs(self):
        for scheduler_class in self.scheduler_classes:
            has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
            has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0

            if has_kwarg_in_model_class and not has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
                    " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                    " [<deprecated_argument>]`"
                )

            if not has_kwarg_in_model_class and has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
                    f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
                    " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
                )

Patrick von Platen's avatar
Patrick von Platen committed
586
587

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
588
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
592
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
596
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
597
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
598
599
600
601
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
602

Patrick von Platen's avatar
Patrick von Platen committed
603
604
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
605
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
606
607
608
609
610
611
612
613
614
615
616
617
618

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

619
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
620
621
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
622

623
624
625
626
627
628
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "sample"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_deprecated_predict_epsilon(self):
        deprecate("remove this test", "0.10.0", "remove")
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
        for predict_epsilon in [True, False]:
            self.check_over_configs(predict_epsilon=predict_epsilon)

    def test_deprecated_epsilon(self):
        deprecate("remove this test", "0.10.0", "remove")
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()

        sample = self.dummy_sample_deter
        residual = 0.1 * self.dummy_sample_deter
        time_step = 4

        scheduler = scheduler_class(**scheduler_config)
        scheduler_eps = scheduler_class(predict_epsilon=False, **scheduler_config)

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output = scheduler.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output_eps = scheduler_eps.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        assert (output - output_eps).abs().sum() < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
656
657
658
659
660
661
662
663
664
    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

665
666
667
668
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
669
670
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
671
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
672
673
674
675
676
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
677
        sample = self.dummy_sample_deter
678
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
679
680
681

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
682
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
683

684
            # 2. predict previous mean of sample x_t-1
685
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
686

687
688
689
690
691
692
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
693

694
695
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
696

697
        assert abs(result_sum.item() - 258.9070) < 1e-2
698
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
699

Patrick von Platen's avatar
update  
Patrick von Platen committed
700

Patrick von Platen's avatar
Patrick von Platen committed
701
702
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
703
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
704

Patrick von Platen's avatar
Patrick von Platen committed
705
706
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
707
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
708
709
710
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
711
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
712
        }
Patrick von Platen's avatar
Patrick von Platen committed
713

Patrick von Platen's avatar
Patrick von Platen committed
714
715
716
        config.update(**kwargs)
        return config

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps, eta = 10, 0.0

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta).prev_sample

        return sample

Patrick von Platen's avatar
Patrick von Platen committed
735
    def test_timesteps(self):
736
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
737
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
738

739
740
741
742
743
744
745
746
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(5)
747
        assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
748

Patrick von Platen's avatar
Patrick von Platen committed
749
750
751
752
753
754
755
756
    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

757
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
758
759
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
760
761
762
763
764
765
766

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
767
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
768
769
770
771
772
773
774

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
775
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
776
777
        scheduler = scheduler_class(**scheduler_config)

778
779
780
781
782
783
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
784
785

    def test_full_loop_no_noise(self):
786
        sample = self.full_loop()
Patrick von Platen's avatar
Patrick von Platen committed
787

788
789
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
790

791
792
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
793

794
795
796
797
798
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
799

800
801
        assert abs(result_sum.item() - 149.8295) < 1e-2
        assert abs(result_mean.item() - 0.1951) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
802

803
804
805
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
806
807
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
808

809
810
        assert abs(result_sum.item() - 149.0784) < 1e-2
        assert abs(result_mean.item() - 0.1941) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
811
812


813
814
815
816
817
818
819
820
821
822
823
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DPMSolverMultistepScheduler,)
    forward_default_kwargs = (("num_inference_steps", 25),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "solver_order": 2,
824
            "prediction_type": "epsilon",
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            "thresholding": False,
            "sample_max_value": 1.0,
            "algorithm_type": "dpmsolver++",
            "solver_type": "midpoint",
            "lower_order_final": False,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
851
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output, new_output = sample, sample
            for t in range(time_step, time_step + scheduler.config.solver_order + 1):
                output = scheduler.step(residual, t, output, **kwargs).prev_sample
                new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample

                assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
883
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [25, 50, 100, 999, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_thresholding(self):
        self.check_over_configs(thresholding=False)
        for order in [1, 2, 3]:
            for solver_type in ["midpoint", "heun"]:
                for threshold in [0.5, 1.0, 2.0]:
950
                    for prediction_type in ["epsilon", "sample"]:
951
952
                        self.check_over_configs(
                            thresholding=True,
953
                            prediction_type=prediction_type,
954
955
956
957
958
959
960
961
962
963
                            sample_max_value=threshold,
                            algorithm_type="dpmsolver++",
                            solver_order=order,
                            solver_type=solver_type,
                        )

    def test_solver_order_and_type(self):
        for algorithm_type in ["dpmsolver", "dpmsolver++"]:
            for solver_type in ["midpoint", "heun"]:
                for order in [1, 2, 3]:
964
                    for prediction_type in ["epsilon", "sample"]:
965
966
967
                        self.check_over_configs(
                            solver_order=order,
                            solver_type=solver_type,
968
                            prediction_type=prediction_type,
969
970
971
972
973
                            algorithm_type=algorithm_type,
                        )
                        sample = self.full_loop(
                            solver_order=order,
                            solver_type=solver_type,
974
                            prediction_type=prediction_type,
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
                            algorithm_type=algorithm_type,
                        )
                        assert not torch.isnan(sample).any(), "Samples have nan numbers"

    def test_lower_order_final(self):
        self.check_over_configs(lower_order_final=True)
        self.check_over_configs(lower_order_final=False)

    def test_inference_steps(self):
        for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.3301) < 1e-3


Patrick von Platen's avatar
Patrick von Platen committed
994
995
996
997
998
999
class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
1000
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
1001
1002
1003
1004
1005
1006
1007
1008
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

1009
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
1010
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1011
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1012
1013
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1014
1015
1016
1017
1018
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1019
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1020
1021
1022
1023
1024
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1025
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1026
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
1029
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

1030
1031
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1032

1033
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1034

1035
1036
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
1037

1038
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1039
1040
1041
1042
1043

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
1044
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1045
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1046
1047
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1048
1049
1050
1051
1052
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1053
            scheduler.set_timesteps(num_inference_steps)
1054

Nathan Lambert's avatar
Nathan Lambert committed
1055
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
1059
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1060
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1061
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
1062
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1063

Nathan Lambert's avatar
Nathan Lambert committed
1064
1065
1066
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

1067
1068
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
1069

1070
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1071

1072
1073
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1074

1075
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_prk(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_plms(residual, t, sample).prev_sample

        return sample

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
1114
1115
1116
1117
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

1118
1119
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
1120
1121
1122
1123

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

1124
1125
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
1126
1127
1128
1129

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
1132
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1133

1134
1135
1136
1137
1138
1139
1140
1141
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(10)
1142
        assert torch.equal(
1143
            scheduler.timesteps,
1144
1145
1146
1147
            torch.LongTensor(
                [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
            ),
        )
1148

Patrick von Platen's avatar
Patrick von Platen committed
1149
    def test_betas(self):
1150
        for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
1163
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    def test_pow_of_3_inference_steps(self):
        # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
        num_inference_steps = 27

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)

            # before power of 3 fix, would error on first step, so we only need to do two
            for i, t in enumerate(scheduler.prk_timesteps[:2]):
                sample = scheduler.step_prk(residual, t, sample).prev_sample

1182
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
1183
1184
1185
1186
1187
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

1188
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1189
1190

    def test_full_loop_no_noise(self):
1191
1192
1193
        sample = self.full_loop()
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1194

1195
1196
        assert abs(result_sum.item() - 198.1318) < 1e-2
        assert abs(result_mean.item() - 0.2580) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1197

1198
1199
1200
1201
1202
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1203

1204
1205
        assert abs(result_sum.item() - 230.0399) < 1e-2
        assert abs(result_mean.item() - 0.2995) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1206

1207
1208
1209
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
1210
1211
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1212

1213
1214
        assert abs(result_sum.item() - 186.9482) < 1e-2
        assert abs(result_mean.item() - 0.2434) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
1215
1216


1217
1218
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
1219
    scheduler_classes = (ScoreSdeVeScheduler,)
1220
    forward_default_kwargs = ()
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1278
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1279

1280
1281
1282
1283
1284
1285
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1286

1287
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1288

1289
1290
1291
1292
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1293

1294
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1309
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1310

1311
1312
1313
1314
1315
1316
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1317

1318
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1319

1320
1321
1322
1323
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1324

1325
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
1336
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
1337
1338
1339
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
1340
1341
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
1352
        scheduler.set_timesteps(num_inference_steps)
1353
        generator = torch.manual_seed(0)
Nathan Lambert's avatar
Nathan Lambert committed
1354
1355
1356
1357

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

1358
            for _ in range(scheduler.config.correct_steps):
Nathan Lambert's avatar
Nathan Lambert committed
1359
                with torch.no_grad():
1360
                    model_output = model(sample, sigma_t)
1361
                sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1362
1363

            with torch.no_grad():
1364
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
1365

1366
            output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
1367
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
1368

1369
1370
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1371

1372
1373
        assert np.isclose(result_sum.item(), 14372758528.0)
        assert np.isclose(result_mean.item(), 18714530.0)
Patrick von Platen's avatar
Patrick von Platen committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

1392
1393
            output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1394
1395
1396

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419


class LMSDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (LMSDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "trained_betas": None,
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
1420
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [0, 500, 800]:
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
1439
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
1440
1441

        for i, t in enumerate(scheduler.timesteps):
1442
            sample = scheduler.scale_model_input(sample, t)
1443
1444
1445

            model_output = model(sample, t)

1446
            output = scheduler.step(model_output, t, sample)
1447
1448
1449
1450
1451
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

1452
        assert abs(result_sum.item() - 1006.388) < 1e-2
1453
        assert abs(result_mean.item() - 1.31) < 1e-3
1454

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 1006.388) < 1e-2
        assert abs(result_mean.item() - 1.31) < 1e-3

1480

hlky's avatar
hlky committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "trained_betas": None,
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1516
1517
1518
1519
1520
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1521
1522
1523

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1524
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

1540
1541
1542
1543
1544
1545
1546
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

1547
1548
1549
1550
1551
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

hlky's avatar
hlky committed
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerAncestralDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "trained_betas": None,
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1607
1608
1609
1610
1611
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1612
1613
1614

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1615
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1627

1628
        if torch_device in ["cpu", "mps"]:
Patrick von Platen's avatar
Patrick von Platen committed
1629
1630
1631
1632
1633
1634
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
hlky's avatar
hlky committed
1635

1636
1637
1638
1639
1640
1641
1642
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

1643
1644
1645
1646
1647
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1663
1664

        if str(torch_device).startswith("cpu"):
1665
1666
1667
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1668
        elif str(torch_device).startswith("mps"):
1669
1670
            # Larger tolerance on mps
            assert abs(result_mean.item() - 0.1983) < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
1671
1672
1673
1674
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
1675

hlky's avatar
hlky committed
1676

1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
class IPNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (IPNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {"num_train_timesteps": 1000}
        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1705
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1743
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps, time_step=None)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 2540529) < 10
Will Berman's avatar
Will Berman committed
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878


class VQDiffusionSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (VQDiffusionScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_vec_classes": 4097,
            "num_train_timesteps": 100,
        }

        config.update(**kwargs)
        return config

    def dummy_sample(self, num_vec_classes):
        batch_size = 4
        height = 8
        width = 8

        sample = torch.randint(0, num_vec_classes, (batch_size, height * width))

        return sample

    @property
    def dummy_sample_deter(self):
        assert False

    def dummy_model(self, num_vec_classes):
        def model(sample, t, *args):
            batch_size, num_latent_pixels = sample.shape
            logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels))
            return_value = F.log_softmax(logits.double(), dim=1).float()
            return return_value

        return model

    def test_timesteps(self):
        for timesteps in [2, 5, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_num_vec_classes(self):
        for num_vec_classes in [5, 100, 1000, 4000]:
            self.check_over_configs(num_vec_classes=num_vec_classes)

    def test_time_indices(self):
        for t in [0, 50, 99]:
            self.check_over_forward(time_step=t)

    def test_add_noise_device(self):
        pass