README.md 21.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

23
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers.
24
- Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
25
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)).
27

28
29
30
31
32
## Installation

**With `pip`**
    
```bash
anton-l's avatar
anton-l committed
33
pip install --upgrade diffusers
34
35
36
37
38
39
40
41
```

**With `conda`**

```sh
conda install -c conda-forge diffusers
```

42
43
44
45
**Apple Silicon (M1/M2) support**

Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps).

46
47
48
## Contributing

We ❤️  contributions from the open-source community! 
Patrick von Platen's avatar
Patrick von Platen committed
49
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
50
51
52
53
54
55
56
57
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)

Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
## Quickstart

In order to get started, we recommend taking a look at two notebooks:

62
- The [Getting started with Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) notebook, which showcases an end-to-end example of usage for diffusion models, schedulers and pipelines.
63
  Take a look at this notebook to learn how to use the pipeline abstraction, which takes care of everything (model, scheduler, noise handling) for you, and also to understand each independent building block in the library.
64
65
- The [Training a diffusers model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) notebook summarizes diffusion models training methods. This notebook takes a step-by-step approach to training your
  diffusion models on an image dataset, with explanatory graphics. 
Omar Sanseviero's avatar
Omar Sanseviero committed
66
  
Patrick von Platen's avatar
Patrick von Platen committed
67
## **New** Stable Diffusion is now fully compatible with `diffusers`!  
Patrick von Platen's avatar
Patrick von Platen committed
68
69

Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
Patrick von Platen's avatar
Patrick von Platen committed
70
71
See the [model card](https://huggingface.co/CompVis/stable-diffusion) for more information.

72
You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
73

74

75
76
### Text-to-Image generation with Stable Diffusion

77
78
79
We recommend using the model in [half-precision (`fp16`)](https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/) as it gives almost always the same results as full
precision while being roughly twice as fast and requiring half the amount of GPU RAM.

80
```python
Patrick von Platen's avatar
Patrick von Platen committed
81
# make sure you're logged in with `huggingface-cli login`
82
83
from diffusers import StableDiffusionPipeline

84
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_type=torch.float16, revision="fp16")
85
86
87
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
88
image = pipe(prompt).images[0]  
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
```

**Note**: If you don't want to use the token, you can also simply download the model weights
(after having [accepted the license](https://huggingface.co/CompVis/stable-diffusion-v1-4)) and pass
the path to the local folder to the `StableDiffusionPipeline`.

```
git lfs install
git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
```

Assuming the folder is stored locally under `./stable-diffusion-v1-4`, you can also run stable diffusion
without requiring an authentication token:

```python
pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-4")
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
108
image = pipe(prompt).images[0]  
109
110
```

111
112
If you are limited by GPU memory, you might want to consider chunking the attention computation in addition 
to using `fp16`.
113
The following snippet should result in less than 4GB VRAM.
114
115
116
117
118
119
120
121
122
123

```python
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
124
pipe.enable_attention_slicing()
125
image = pipe(prompt).images[0]  
126
127
```

128
If you wish to use a different scheduler, you can simply instantiate
129
130
131
132
it before the pipeline and pass it to `from_pretrained`.
    
```python
from diffusers import LMSDiscreteScheduler
Patrick von Platen's avatar
Patrick von Platen committed
133
134

lms = LMSDiscreteScheduler(
135
136
137
    beta_start=0.00085, 
    beta_end=0.012, 
    beta_schedule="scaled_linear"
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
)

pipe = StableDiffusionPipeline.from_pretrained(
141
142
143
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
144
    scheduler=lms,
145
146
)
pipe = pipe.to("cuda")
Patrick von Platen's avatar
Patrick von Platen committed
147
148

prompt = "a photo of an astronaut riding a horse on mars"
149
image = pipe(prompt).images[0]  
Patrick von Platen's avatar
Patrick von Platen committed
150
151
152
153
    
image.save("astronaut_rides_horse.png")
```

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
If you want to run Stable Diffusion on CPU or you want to have maximum precision on GPU, 
please run the model in the default *full-precision* setting:

```python
# make sure you're logged in with `huggingface-cli login`
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")

# disable the following line if you run on CPU
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]  
    
image.save("astronaut_rides_horse.png")
```

172
173
174
175
176
177
### Image-to-Image text-guided generation with Stable Diffusion

The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.

```python
import requests
Patrick von Platen's avatar
Patrick von Platen committed
178
import torch
179
180
181
182
183
184
185
from PIL import Image
from io import BytesIO

from diffusers import StableDiffusionImg2ImgPipeline

# load the pipeline
device = "cuda"
186
model_id_or_path = "CompVis/stable-diffusion-v1-4"
187
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
188
    model_id_or_path,
189
190
191
    revision="fp16", 
    torch_dtype=torch.float16,
)
192
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
193
# and pass `model_id_or_path="./stable-diffusion-v1-4"`.
194
195
196
197
198
199
200
201
202
203
204
pipe = pipe.to(device)

# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))

prompt = "A fantasy landscape, trending on artstation"

205
images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
206
207
208

images[0].save("fantasy_landscape.png")
```
209
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
210
211
212
213
214
215
216
217

### In-painting using Stable Diffusion

The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.

```python
from io import BytesIO

Patrick von Platen's avatar
Patrick von Platen committed
218
import torch
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import requests
import PIL

from diffusers import StableDiffusionInpaintPipeline

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

device = "cuda"
235
model_id_or_path = "CompVis/stable-diffusion-v1-4"
236
pipe = StableDiffusionInpaintPipeline.from_pretrained(
237
    model_id_or_path,
238
239
240
    revision="fp16", 
    torch_dtype=torch.float16,
)
241
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
242
# and pass `model_id_or_path="./stable-diffusion-v1-4"`.
243
244
245
pipe = pipe.to(device)

prompt = "a cat sitting on a bench"
246
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
247
248
249
250
251
252

images[0].save("cat_on_bench.png")
```

### Tweak prompts reusing seeds and latents

253
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](https://github.com/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).
254
255


256
For more details, check out [the Stable Diffusion notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb)
Patrick von Platen's avatar
Patrick von Platen committed
257
258
and have a look into the [release notes](https://github.com/huggingface/diffusers/releases/tag/v0.2.0).
  
Omar Sanseviero's avatar
Omar Sanseviero committed
259
260
## Examples

261
262
263
264
There are many ways to try running Diffusers! Here we outline code-focused tools (primarily using `DiffusionPipeline`s and Google Colab) and interactive web-tools.

### Running Code

Omar Sanseviero's avatar
Omar Sanseviero committed
265
266
If you want to run the code yourself 💻, you can try out:
- [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256)
267
```python
268
269
270
# !pip install diffusers transformers
from diffusers import DiffusionPipeline

271
device = "cuda"
272
273
274
275
model_id = "CompVis/ldm-text2im-large-256"

# load model and scheduler
ldm = DiffusionPipeline.from_pretrained(model_id)
276
ldm = ldm.to(device)
277
278
279

# run pipeline in inference (sample random noise and denoise)
prompt = "A painting of a squirrel eating a burger"
280
image = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images[0]
281

282
283
# save image
image.save("squirrel.png")
284
```
Omar Sanseviero's avatar
Omar Sanseviero committed
285
- [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256)
286
```python
287
288
289
290
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline

model_id = "google/ddpm-celebahq-256"
291
device = "cuda"
292
293
294

# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id)  # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
295
ddpm.to(device)
296
297

# run pipeline in inference (sample random noise and denoise)
298
image = ddpm().images[0]
299
300

# save image
301
image.save("ddpm_generated_image.png")
302
303
```
- [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256)
304
- [Unconditional Diffusion with continuous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024)
Omar Sanseviero's avatar
Omar Sanseviero committed
305

306
**Other Notebooks**:
307
* [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
308
309
310
* [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),

### Web Demos
Omar Sanseviero's avatar
Omar Sanseviero committed
311
312
313
314
315
316
If you just want to play around with some web demos, you can try out the following 🚀 Spaces:
| Model                          	| Hugging Face Spaces                                                                                                                                               	|
|--------------------------------	|-------------------------------------------------------------------------------------------------------------------------------------------------------------------	|
| Text-to-Image Latent Diffusion 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/text2img-latent-diffusion) 	|
| Faces generator                	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/celeba-latent-diffusion)    	|
| DDPM with different schedulers 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/fusing/celeba-diffusion)           	|
317
| Conditional generation from sketch  	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/huggingface/diffuse-the-rest)           	|
318
| Composable diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Shuang59/Composable-Diffusion)           	|
Patrick von Platen's avatar
Patrick von Platen committed
319

Patrick von Platen's avatar
Patrick von Platen committed
320
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
321

Kashif Rasul's avatar
Kashif Rasul committed
322
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
Patrick von Platen's avatar
Patrick von Platen committed
323
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
324

Nathan Lambert's avatar
Nathan Lambert committed
325
326
327
328
329
330
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/>
    <br>
    <em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
331
332
333
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
334

Nathan Lambert's avatar
Nathan Lambert committed
335
336
337
338
339
340
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/>
    <br>
    <em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
341

Patrick von Platen's avatar
Patrick von Platen committed
342
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
Patrick von Platen's avatar
Patrick von Platen committed
343
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
344

Nathan Lambert's avatar
Nathan Lambert committed
345
346
347
348
349
350
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
    <br>
    <em> Figure from ImageGen (https://imagen.research.google/). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
351
352
## Philosophy

353
354
- Readability and clarity is preferred over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continuous outputs**, *e.g.* vision and audio.
355
- Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of another library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).
Patrick von Platen's avatar
Patrick von Platen committed
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
## In the works

For the first release, 🤗 Diffusers focuses on text-to-image diffusion techniques. However, diffusers can be used for much more than that! Over the upcoming releases, we'll be focusing on:

- Diffusers for audio
- Diffusers for reinforcement learning (initial work happening in https://github.com/huggingface/diffusers/pull/105).
- Diffusers for video generation
- Diffusers for molecule generation (initial work happening in https://github.com/huggingface/diffusers/pull/54)

A few pipeline components are already being worked on, namely:

- BDDMPipeline for spectrogram-to-sound vocoding
- GLIDEPipeline to support OpenAI's GLIDE model
- Grad-TTS for text to audio generation / conditional audio generation

We want diffusers to be a toolbox useful for diffusers models in general; if you find yourself limited in any way by the current API, or would like to see additional models, schedulers, or techniques, please open a [GitHub issue](https://github.com/huggingface/diffusers/issues) mentioning what you would like to see.

## Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim).
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)

Patrick von Platen's avatar
Patrick von Platen committed
383
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
Patrick von Platen's avatar
Patrick von Platen committed
384
385
386

## Citation

Patrick von Platen's avatar
Patrick von Platen committed
387
```bibtex
Patrick von Platen's avatar
Patrick von Platen committed
388
@misc{von-platen-etal-2022-diffusers,
Patrick von Platen's avatar
Patrick von Platen committed
389
  author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
393
394
395
  title = {Diffusers: State-of-the-art diffusion models},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/diffusers}}
}
Patrick von Platen's avatar
Patrick von Platen committed
396
```