README.md 20.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

23
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers.
24
- Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
25
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)).
27

28
29
30
31
32
## Installation

**With `pip`**
    
```bash
anton-l's avatar
anton-l committed
33
pip install --upgrade diffusers
34
35
36
37
38
39
40
41
```

**With `conda`**

```sh
conda install -c conda-forge diffusers
```

42
43
44
45
**Apple Silicon (M1/M2) support**

Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps).

46
47
48
## Contributing

We ❤️  contributions from the open-source community! 
Patrick von Platen's avatar
Patrick von Platen committed
49
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
50
51
52
53
54
55
56
57
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)

Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
## Quickstart

In order to get started, we recommend taking a look at two notebooks:

62
- The [Getting started with Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) notebook, which showcases an end-to-end example of usage for diffusion models, schedulers and pipelines.
63
  Take a look at this notebook to learn how to use the pipeline abstraction, which takes care of everything (model, scheduler, noise handling) for you, and also to understand each independent building block in the library.
64
65
- The [Training a diffusers model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) notebook summarizes diffusion models training methods. This notebook takes a step-by-step approach to training your
  diffusion models on an image dataset, with explanatory graphics. 
Omar Sanseviero's avatar
Omar Sanseviero committed
66
  
Patrick von Platen's avatar
Patrick von Platen committed
67
## **New** Stable Diffusion is now fully compatible with `diffusers`!  
Patrick von Platen's avatar
Patrick von Platen committed
68
69

Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
Patrick von Platen's avatar
Patrick von Platen committed
70
71
See the [model card](https://huggingface.co/CompVis/stable-diffusion) for more information.

72
You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
73

74

75
76
77
### Text-to-Image generation with Stable Diffusion

```python
Patrick von Platen's avatar
Patrick von Platen committed
78
# make sure you're logged in with `huggingface-cli login`
79
80
from diffusers import StableDiffusionPipeline

81
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
82
83
84
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
85
image = pipe(prompt).images[0]  
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
```

**Note**: If you don't want to use the token, you can also simply download the model weights
(after having [accepted the license](https://huggingface.co/CompVis/stable-diffusion-v1-4)) and pass
the path to the local folder to the `StableDiffusionPipeline`.

```
git lfs install
git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
```

Assuming the folder is stored locally under `./stable-diffusion-v1-4`, you can also run stable diffusion
without requiring an authentication token:

```python
pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-4")
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
105
image = pipe(prompt).images[0]  
106
107
```

108
109
110
If you are limited by GPU memory, you might want to consider using the model in `fp16` as 
well as chunking the attention computation.
The following snippet should result in less than 4GB VRAM.
111
112
113
114
115
116
117
118
119
120

```python
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
121
pipe.enable_attention_slicing()
122
image = pipe(prompt).images[0]  
123
124
125
126
127
128
129
```

Finally, if you wish to use a different scheduler, you can simply instantiate
it before the pipeline and pass it to `from_pretrained`.
    
```python
from diffusers import LMSDiscreteScheduler
Patrick von Platen's avatar
Patrick von Platen committed
130
131

lms = LMSDiscreteScheduler(
132
133
134
    beta_start=0.00085, 
    beta_end=0.012, 
    beta_schedule="scaled_linear"
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
)

pipe = StableDiffusionPipeline.from_pretrained(
138
139
140
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
141
    scheduler=lms,
142
143
)
pipe = pipe.to("cuda")
Patrick von Platen's avatar
Patrick von Platen committed
144
145

prompt = "a photo of an astronaut riding a horse on mars"
146
image = pipe(prompt).images[0]  
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
    
image.save("astronaut_rides_horse.png")
```

151
152
153
154
155
156
### Image-to-Image text-guided generation with Stable Diffusion

The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.

```python
import requests
Patrick von Platen's avatar
Patrick von Platen committed
157
import torch
158
159
160
161
162
163
164
from PIL import Image
from io import BytesIO

from diffusers import StableDiffusionImg2ImgPipeline

# load the pipeline
device = "cuda"
165
model_id_or_path = "CompVis/stable-diffusion-v1-4"
166
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
167
    model_id_or_path,
168
169
170
    revision="fp16", 
    torch_dtype=torch.float16,
)
171
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
172
# and pass `model_id_or_path="./stable-diffusion-v1-4"`.
173
174
175
176
177
178
179
180
181
182
183
pipe = pipe.to(device)

# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))

prompt = "A fantasy landscape, trending on artstation"

184
images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
185
186
187

images[0].save("fantasy_landscape.png")
```
188
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
189
190
191
192
193
194
195
196

### In-painting using Stable Diffusion

The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.

```python
from io import BytesIO

Patrick von Platen's avatar
Patrick von Platen committed
197
import torch
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import requests
import PIL

from diffusers import StableDiffusionInpaintPipeline

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

device = "cuda"
214
model_id_or_path = "CompVis/stable-diffusion-v1-4"
215
pipe = StableDiffusionInpaintPipeline.from_pretrained(
216
    model_id_or_path,
217
218
219
    revision="fp16", 
    torch_dtype=torch.float16,
)
220
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
221
# and pass `model_id_or_path="./stable-diffusion-v1-4"`.
222
223
224
pipe = pipe.to(device)

prompt = "a cat sitting on a bench"
225
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
226
227
228
229
230
231

images[0].save("cat_on_bench.png")
```

### Tweak prompts reusing seeds and latents

232
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](https://github.com/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).
233
234


235
For more details, check out [the Stable Diffusion notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb)
Patrick von Platen's avatar
Patrick von Platen committed
236
237
and have a look into the [release notes](https://github.com/huggingface/diffusers/releases/tag/v0.2.0).
  
Omar Sanseviero's avatar
Omar Sanseviero committed
238
239
## Examples

240
241
242
243
There are many ways to try running Diffusers! Here we outline code-focused tools (primarily using `DiffusionPipeline`s and Google Colab) and interactive web-tools.

### Running Code

Omar Sanseviero's avatar
Omar Sanseviero committed
244
245
If you want to run the code yourself 💻, you can try out:
- [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256)
246
```python
247
248
249
# !pip install diffusers transformers
from diffusers import DiffusionPipeline

250
device = "cuda"
251
252
253
254
model_id = "CompVis/ldm-text2im-large-256"

# load model and scheduler
ldm = DiffusionPipeline.from_pretrained(model_id)
255
ldm = ldm.to(device)
256
257
258

# run pipeline in inference (sample random noise and denoise)
prompt = "A painting of a squirrel eating a burger"
259
image = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images[0]
260

261
262
# save image
image.save("squirrel.png")
263
```
Omar Sanseviero's avatar
Omar Sanseviero committed
264
- [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256)
265
```python
266
267
268
269
# !pip install diffusers
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline

model_id = "google/ddpm-celebahq-256"
270
device = "cuda"
271
272
273

# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id)  # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
274
ddpm.to(device)
275
276

# run pipeline in inference (sample random noise and denoise)
277
image = ddpm().images[0]
278
279

# save image
280
image.save("ddpm_generated_image.png")
281
282
```
- [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256)
283
- [Unconditional Diffusion with continuous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024)
Omar Sanseviero's avatar
Omar Sanseviero committed
284

285
**Other Notebooks**:
286
* [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
287
288
289
* [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),

### Web Demos
Omar Sanseviero's avatar
Omar Sanseviero committed
290
291
292
293
294
295
If you just want to play around with some web demos, you can try out the following 🚀 Spaces:
| Model                          	| Hugging Face Spaces                                                                                                                                               	|
|--------------------------------	|-------------------------------------------------------------------------------------------------------------------------------------------------------------------	|
| Text-to-Image Latent Diffusion 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/text2img-latent-diffusion) 	|
| Faces generator                	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/celeba-latent-diffusion)    	|
| DDPM with different schedulers 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/fusing/celeba-diffusion)           	|
296
| Conditional generation from sketch  	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/huggingface/diffuse-the-rest)           	|
297
| Composable diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Shuang59/Composable-Diffusion)           	|
Patrick von Platen's avatar
Patrick von Platen committed
298

Patrick von Platen's avatar
Patrick von Platen committed
299
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
300

Kashif Rasul's avatar
Kashif Rasul committed
301
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
Patrick von Platen's avatar
Patrick von Platen committed
302
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
303

Nathan Lambert's avatar
Nathan Lambert committed
304
305
306
307
308
309
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/>
    <br>
    <em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
313

Nathan Lambert's avatar
Nathan Lambert committed
314
315
316
317
318
319
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/>
    <br>
    <em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
320

Patrick von Platen's avatar
Patrick von Platen committed
321
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
Patrick von Platen's avatar
Patrick von Platen committed
322
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
323

Nathan Lambert's avatar
Nathan Lambert committed
324
325
326
327
328
329
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
    <br>
    <em> Figure from ImageGen (https://imagen.research.google/). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
330
331
## Philosophy

332
333
- Readability and clarity is preferred over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continuous outputs**, *e.g.* vision and audio.
334
- Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of another library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).
Patrick von Platen's avatar
Patrick von Platen committed
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
## In the works

For the first release, 🤗 Diffusers focuses on text-to-image diffusion techniques. However, diffusers can be used for much more than that! Over the upcoming releases, we'll be focusing on:

- Diffusers for audio
- Diffusers for reinforcement learning (initial work happening in https://github.com/huggingface/diffusers/pull/105).
- Diffusers for video generation
- Diffusers for molecule generation (initial work happening in https://github.com/huggingface/diffusers/pull/54)

A few pipeline components are already being worked on, namely:

- BDDMPipeline for spectrogram-to-sound vocoding
- GLIDEPipeline to support OpenAI's GLIDE model
- Grad-TTS for text to audio generation / conditional audio generation

We want diffusers to be a toolbox useful for diffusers models in general; if you find yourself limited in any way by the current API, or would like to see additional models, schedulers, or techniques, please open a [GitHub issue](https://github.com/huggingface/diffusers/issues) mentioning what you would like to see.

## Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim).
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)

Patrick von Platen's avatar
Patrick von Platen committed
362
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
Patrick von Platen's avatar
Patrick von Platen committed
363
364
365

## Citation

Patrick von Platen's avatar
Patrick von Platen committed
366
```bibtex
Patrick von Platen's avatar
Patrick von Platen committed
367
@misc{von-platen-etal-2022-diffusers,
Patrick von Platen's avatar
Patrick von Platen committed
368
  author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
373
374
  title = {Diffusers: State-of-the-art diffusion models},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/diffusers}}
}
Patrick von Platen's avatar
Patrick von Platen committed
375
```