README.md 20.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
Anton Lozhkov's avatar
Anton Lozhkov committed
3
    <img src="docs/source/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.

More precisely, 🤗 Diffusers offers:

23
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers.
Patrick von Platen's avatar
Patrick von Platen committed
24
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
25
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
Patrick von Platen's avatar
Patrick von Platen committed
26
- Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)).
27

28
29
30
31
32
## Installation

**With `pip`**
    
```bash
anton-l's avatar
anton-l committed
33
pip install --upgrade diffusers
34
35
36
37
38
39
40
41
```

**With `conda`**

```sh
conda install -c conda-forge diffusers
```

42
43
44
45
**Apple Silicon (M1/M2) support**

Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps).

46
47
48
## Contributing

We ❤️  contributions from the open-source community! 
Patrick von Platen's avatar
Patrick von Platen committed
49
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
50
51
52
53
54
55
56
57
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)

Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
## Quickstart

In order to get started, we recommend taking a look at two notebooks:

62
- The [Getting started with Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) notebook, which showcases an end-to-end example of usage for diffusion models, schedulers and pipelines.
63
  Take a look at this notebook to learn how to use the pipeline abstraction, which takes care of everything (model, scheduler, noise handling) for you, and also to understand each independent building block in the library.
64
65
- The [Training a diffusers model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) notebook summarizes diffusion models training methods. This notebook takes a step-by-step approach to training your
  diffusion models on an image dataset, with explanatory graphics. 
Omar Sanseviero's avatar
Omar Sanseviero committed
66
  
Patrick von Platen's avatar
Patrick von Platen committed
67
## **New** Stable Diffusion is now fully compatible with `diffusers`!  
Patrick von Platen's avatar
Patrick von Platen committed
68
69

Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
Patrick von Platen's avatar
Patrick von Platen committed
70
71
See the [model card](https://huggingface.co/CompVis/stable-diffusion) for more information.

72
You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
73

74

75
76
77
### Text-to-Image generation with Stable Diffusion

```python
Patrick von Platen's avatar
Patrick von Platen committed
78
79
# make sure you're logged in with `huggingface-cli login`
from torch import autocast
80
81
82
83
84
85
86
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
87
    image = pipe(prompt).images[0]  
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
```

**Note**: If you don't want to use the token, you can also simply download the model weights
(after having [accepted the license](https://huggingface.co/CompVis/stable-diffusion-v1-4)) and pass
the path to the local folder to the `StableDiffusionPipeline`.

```
git lfs install
git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
```

Assuming the folder is stored locally under `./stable-diffusion-v1-4`, you can also run stable diffusion
without requiring an authentication token:

```python
pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-4")
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
108
    image = pipe(prompt).images[0]  
109
110
```

111
112
113
If you are limited by GPU memory, you might want to consider using the model in `fp16` as 
well as chunking the attention computation.
The following snippet should result in less than 4GB VRAM.
114
115
116
117
118
119
120
121
122
123
124

```python
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
    use_auth_token=True
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
125
pipe.enable_attention_slicing()
126
with autocast("cuda"):
127
    image = pipe(prompt).images[0]  
128
129
130
131
132
133
134
```

Finally, if you wish to use a different scheduler, you can simply instantiate
it before the pipeline and pass it to `from_pretrained`.
    
```python
from diffusers import LMSDiscreteScheduler
Patrick von Platen's avatar
Patrick von Platen committed
135
136

lms = LMSDiscreteScheduler(
137
138
139
    beta_start=0.00085, 
    beta_end=0.012, 
    beta_schedule="scaled_linear"
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
)

pipe = StableDiffusionPipeline.from_pretrained(
143
144
145
    "CompVis/stable-diffusion-v1-4", 
    revision="fp16", 
    torch_dtype=torch.float16,
146
147
    scheduler=lms,
    use_auth_token=True
148
149
)
pipe = pipe.to("cuda")
Patrick von Platen's avatar
Patrick von Platen committed
150
151
152

prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
153
    image = pipe(prompt).images[0]  
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157
    
image.save("astronaut_rides_horse.png")
```

158
159
160
161
162
163
164
### Image-to-Image text-guided generation with Stable Diffusion

The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.

```python
from torch import autocast
import requests
Patrick von Platen's avatar
Patrick von Platen committed
165
import torch
166
167
168
169
170
171
172
from PIL import Image
from io import BytesIO

from diffusers import StableDiffusionImg2ImgPipeline

# load the pipeline
device = "cuda"
173
model_id_or_path = "CompVis/stable-diffusion-v1-4"
174
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
175
    model_id_or_path,
176
177
178
179
    revision="fp16", 
    torch_dtype=torch.float16,
    use_auth_token=True
)
180
181
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
# and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`.
182
183
184
185
186
187
188
189
190
191
192
193
pipe = pipe.to(device)

# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))

prompt = "A fantasy landscape, trending on artstation"

with autocast("cuda"):
194
    images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
195
196
197
198
199
200
201
202
203
204
205
206
207

images[0].save("fantasy_landscape.png")
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb)

### In-painting using Stable Diffusion

The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.

```python
from io import BytesIO

from torch import autocast
Patrick von Platen's avatar
Patrick von Platen committed
208
import torch
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import requests
import PIL

from diffusers import StableDiffusionInpaintPipeline

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

device = "cuda"
225
model_id_or_path = "CompVis/stable-diffusion-v1-4"
226
pipe = StableDiffusionInpaintPipeline.from_pretrained(
227
    model_id_or_path,
228
229
230
231
    revision="fp16", 
    torch_dtype=torch.float16,
    use_auth_token=True
)
232
233
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
# and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`.
234
235
236
237
pipe = pipe.to(device)

prompt = "a cat sitting on a bench"
with autocast("cuda"):
238
    images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
239
240
241
242
243
244

images[0].save("cat_on_bench.png")
```

### Tweak prompts reusing seeds and latents

245
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](https://github.com/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).
246
247


248
For more details, check out [the Stable Diffusion notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb)
Patrick von Platen's avatar
Patrick von Platen committed
249
250
and have a look into the [release notes](https://github.com/huggingface/diffusers/releases/tag/v0.2.0).
  
Omar Sanseviero's avatar
Omar Sanseviero committed
251
252
## Examples

253
254
255
256
There are many ways to try running Diffusers! Here we outline code-focused tools (primarily using `DiffusionPipeline`s and Google Colab) and interactive web-tools.

### Running Code

Omar Sanseviero's avatar
Omar Sanseviero committed
257
258
If you want to run the code yourself 💻, you can try out:
- [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256)
259
```python
260
# !pip install diffusers transformers
261
from torch import autocast
262
263
from diffusers import DiffusionPipeline

264
device = "cuda"
265
266
267
268
model_id = "CompVis/ldm-text2im-large-256"

# load model and scheduler
ldm = DiffusionPipeline.from_pretrained(model_id)
269
ldm = ldm.to(device)
270
271
272

# run pipeline in inference (sample random noise and denoise)
prompt = "A painting of a squirrel eating a burger"
273
274
with autocast(device):
    image = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images[0]
275

276
277
# save image
image.save("squirrel.png")
278
```
Omar Sanseviero's avatar
Omar Sanseviero committed
279
- [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256)
280
```python
281
# !pip install diffusers
282
from torch import autocast
283
284
285
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline

model_id = "google/ddpm-celebahq-256"
286
device = "cuda"
287
288
289

# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id)  # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
290
ddpm.to(device)
291
292

# run pipeline in inference (sample random noise and denoise)
293
294
with autocast("cuda"):
    image = ddpm().images[0]
295
296

# save image
297
image.save("ddpm_generated_image.png")
298
299
```
- [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256)
Omar Sanseviero's avatar
Omar Sanseviero committed
300
301
- [Unconditional Diffusion with continous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024)

302
303
304
305
306
**Other Notebooks**:
* [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
* [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),

### Web Demos
Omar Sanseviero's avatar
Omar Sanseviero committed
307
308
309
310
311
312
If you just want to play around with some web demos, you can try out the following 🚀 Spaces:
| Model                          	| Hugging Face Spaces                                                                                                                                               	|
|--------------------------------	|-------------------------------------------------------------------------------------------------------------------------------------------------------------------	|
| Text-to-Image Latent Diffusion 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/text2img-latent-diffusion) 	|
| Faces generator                	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/celeba-latent-diffusion)    	|
| DDPM with different schedulers 	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/fusing/celeba-diffusion)           	|
313
| Conditional generation from sketch  	| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/huggingface/diffuse-the-rest)           	|
314
| Composable diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Shuang59/Composable-Diffusion)           	|
Patrick von Platen's avatar
Patrick von Platen committed
315

Patrick von Platen's avatar
Patrick von Platen committed
316
## Definitions
Patrick von Platen's avatar
Patrick von Platen committed
317

Kashif Rasul's avatar
Kashif Rasul committed
318
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
Patrick von Platen's avatar
Patrick von Platen committed
319
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Patrick von Platen's avatar
Patrick von Platen committed
320

Nathan Lambert's avatar
Nathan Lambert committed
321
322
323
324
325
326
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/>
    <br>
    <em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
Patrick von Platen's avatar
Patrick von Platen committed
330

Nathan Lambert's avatar
Nathan Lambert committed
331
332
333
334
335
336
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/>
    <br>
    <em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
337

Patrick von Platen's avatar
Patrick von Platen committed
338
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
Patrick von Platen's avatar
Patrick von Platen committed
339
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
Patrick von Platen's avatar
Patrick von Platen committed
340

Nathan Lambert's avatar
Nathan Lambert committed
341
342
343
344
345
346
<p align="center">
    <img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
    <br>
    <em> Figure from ImageGen (https://imagen.research.google/). </em>
<p>
    
Patrick von Platen's avatar
Patrick von Platen committed
347
348
## Philosophy

milyiyo's avatar
milyiyo committed
349
- Readability and clarity is prefered over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
350
351
- Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of another library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).
Patrick von Platen's avatar
Patrick von Platen committed
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
## In the works

For the first release, 🤗 Diffusers focuses on text-to-image diffusion techniques. However, diffusers can be used for much more than that! Over the upcoming releases, we'll be focusing on:

- Diffusers for audio
- Diffusers for reinforcement learning (initial work happening in https://github.com/huggingface/diffusers/pull/105).
- Diffusers for video generation
- Diffusers for molecule generation (initial work happening in https://github.com/huggingface/diffusers/pull/54)

A few pipeline components are already being worked on, namely:

- BDDMPipeline for spectrogram-to-sound vocoding
- GLIDEPipeline to support OpenAI's GLIDE model
- Grad-TTS for text to audio generation / conditional audio generation

We want diffusers to be a toolbox useful for diffusers models in general; if you find yourself limited in any way by the current API, or would like to see additional models, schedulers, or techniques, please open a [GitHub issue](https://github.com/huggingface/diffusers/issues) mentioning what you would like to see.

## Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim).
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)

Patrick von Platen's avatar
Patrick von Platen committed
379
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.