scheduling_pndm.py 7.95 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
import pdb
19
from typing import Union
Patrick von Platen's avatar
Patrick von Platen committed
20

21
import numpy as np
22
import torch
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
36
37
38
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
39

40
41
42
43
44
45
46
47
48
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
49
50
51


class PNDMScheduler(SchedulerMixin, ConfigMixin):
52
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
53
54
    def __init__(
        self,
Nathan Lambert's avatar
Nathan Lambert committed
55
        num_train_timesteps=1000,
Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
61
62
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):

        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
63
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
64
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
65
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
66
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
74
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

Patrick von Platen's avatar
Patrick von Platen committed
75
76
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
77
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
81
        self.cur_model_output = 0
82
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
83
84
        self.ets = []

85
86
87
88
89
90
91
92
        # setable values
        self.num_inference_steps = None
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
        self.prk_timesteps = None
        self.plms_timesteps = None

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
93

94
95
96
    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
        self.timesteps = list(
Nathan Lambert's avatar
Nathan Lambert committed
97
98
            range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps)
        )
Patrick von Platen's avatar
Patrick von Platen committed
99

100
        prk_time_steps = np.array(self.timesteps[-self.pndm_order :]).repeat(2) + np.tile(
Nathan Lambert's avatar
Nathan Lambert committed
101
            np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
102
        )
103
104
        self.prk_timesteps = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1]))
        self.plms_timesteps = list(reversed(self.timesteps[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
105

106
        self.set_format(tensor_format=self.tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
107

108
109
    def step_prk(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
110
        model_output: Union[torch.FloatTensor, np.ndarray],
111
112
113
114
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        num_inference_steps,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
115
116
117
118
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
        """
119
        t = timestep
120
        prk_time_steps = self.prk_timesteps
Patrick von Platen's avatar
Patrick von Platen committed
121

Patrick von Platen's avatar
Patrick von Platen committed
122
123
        t_orig = prk_time_steps[t // 4 * 4]
        t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
124

Patrick von Platen's avatar
Patrick von Platen committed
125
        if t % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
126
127
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
128
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
129
        elif (t - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
130
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
131
        elif (t - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
132
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
133
        elif (t - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
134
135
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
136

Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
140
        return {"prev_sample": self.get_prev_sample(cur_sample, t_orig, t_orig_prev, model_output)}
Patrick von Platen's avatar
Patrick von Platen committed
141

142
143
    def step_plms(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
144
        model_output: Union[torch.FloatTensor, np.ndarray],
145
146
147
148
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        num_inference_steps,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
149
150
151
152
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
        """
153
        t = timestep
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157
158
159
160
161
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

162
        timesteps = self.plms_timesteps
Patrick von Platen's avatar
Patrick von Platen committed
163

Patrick von Platen's avatar
Patrick von Platen committed
164
165
        t_orig = timesteps[t]
        t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
166
        self.ets.append(model_output)
Patrick von Platen's avatar
Patrick von Platen committed
167

Patrick von Platen's avatar
Patrick von Platen committed
168
        model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
169

Patrick von Platen's avatar
Patrick von Platen committed
170
        return {"prev_sample": self.get_prev_sample(sample, t_orig, t_orig_prev, model_output)}
Patrick von Platen's avatar
Patrick von Platen committed
171

Patrick von Platen's avatar
Patrick von Platen committed
172
    def get_prev_sample(self, sample, t_orig, t_orig_prev, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
176
177
178
179
180
181
182
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
183
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
184
        # prev_sample -> x_(t−δ)
185
186
        alpha_prod_t = self.alphas_cumprod[t_orig + 1]
        alpha_prod_t_prev = self.alphas_cumprod[t_orig_prev + 1]
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192
193
194
195
196
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
197
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
205
206

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
207
208

    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
209
        return self.config.num_train_timesteps