# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math import pdb from typing import Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas, dtype=np.float32) class PNDMScheduler(SchedulerMixin, ConfigMixin): @register_to_config def __init__( self, num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", tensor_format="np", ): if beta_schedule == "linear": self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = np.cumprod(self.alphas, axis=0) self.one = np.array(1.0) # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # running values self.cur_model_output = 0 self.cur_sample = None self.ets = [] # setable values self.num_inference_steps = None self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.prk_timesteps = None self.plms_timesteps = None self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def set_timesteps(self, num_inference_steps): self.num_inference_steps = num_inference_steps self.timesteps = list( range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps) ) prk_time_steps = np.array(self.timesteps[-self.pndm_order :]).repeat(2) + np.tile( np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) self.prk_timesteps = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1])) self.plms_timesteps = list(reversed(self.timesteps[:-3])) self.set_format(tensor_format=self.tensor_format) def step_prk( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], num_inference_steps, ): """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. """ t = timestep prk_time_steps = self.prk_timesteps t_orig = prk_time_steps[t // 4 * 4] t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)] if t % 4 == 0: self.cur_model_output += 1 / 6 * model_output self.ets.append(model_output) self.cur_sample = sample elif (t - 1) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (t - 2) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (t - 3) % 4 == 0: model_output = self.cur_model_output + 1 / 6 * model_output self.cur_model_output = 0 # cur_sample should not be `None` cur_sample = self.cur_sample if self.cur_sample is not None else sample return {"prev_sample": self.get_prev_sample(cur_sample, t_orig, t_orig_prev, model_output)} def step_plms( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], num_inference_steps, ): """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. """ t = timestep if len(self.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) timesteps = self.plms_timesteps t_orig = timesteps[t] t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)] self.ets.append(model_output) model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) return {"prev_sample": self.get_prev_sample(sample, t_orig, t_orig_prev, model_output)} def get_prev_sample(self, sample, t_orig, t_orig_prev, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation ( -> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[t_orig + 1] alpha_prod_t_prev = self.alphas_cumprod[t_orig_prev + 1] beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def __len__(self): return self.config.num_train_timesteps