configuration_utils.py 33.7 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
"""ConfigMixin base class and utilities."""

18
import dataclasses
19
import functools
20
import importlib
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
import inspect
22
23
24
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
25
from collections import OrderedDict
vincedovy's avatar
vincedovy committed
26
from pathlib import Path
Marc Sun's avatar
Marc Sun committed
27
from typing import Any, Dict, Optional, Tuple, Union
28

29
import numpy as np
Marc Sun's avatar
Marc Sun committed
30
from huggingface_hub import DDUFEntry, create_repo, hf_hub_download
31
32
33
34
35
36
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    validate_hf_hub_args,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
from requests import HTTPError
38
from typing_extensions import Self
39

Patrick von Platen's avatar
Patrick von Platen committed
40
from . import __version__
41
42
43
44
45
46
47
48
from .utils import (
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    DummyObject,
    deprecate,
    extract_commit_hash,
    http_user_agent,
    logging,
)
49

50

51
52
53
54
55
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


Patrick von Platen's avatar
Patrick von Platen committed
88
class ConfigMixin:
89
    r"""
Steven Liu's avatar
Steven Liu committed
90
91
92
    Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
    provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
    saving classes that inherit from [`ConfigMixin`].
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
96
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
97
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
98
99
          overridden by subclass).
        - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
Steven Liu's avatar
Steven Liu committed
100
        - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
101
102
          should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
          subclass).
103
    """
104

105
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
106
    ignore_for_config = []
107
    has_compatibles = False
108

109
110
    _deprecated_kwargs = []

111
    def register_to_config(self, **kwargs):
112
113
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
114
115
116
117
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
Patrick von Platen's avatar
Patrick von Platen committed
118

Patrick von Platen's avatar
Patrick von Platen committed
119
120
121
122
123
124
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
125

Patrick von Platen's avatar
Patrick von Platen committed
126
        self._internal_dict = FrozenDict(internal_dict)
127

128
129
130
131
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
132
        This function is mostly copied from PyTorch's __getattr__ overwrite:
133
134
135
136
137
138
139
140
141
142
143
144
145
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
            return self._internal_dict[name]

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

146
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
147
        """
Steven Liu's avatar
Steven Liu committed
148
        Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
Patrick von Platen's avatar
Patrick von Platen committed
149
        [`~ConfigMixin.from_config`] class method.
150
151
152

        Args:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
153
                Directory where the configuration JSON file is saved (will be created if it does not exist).
154
155
156
157
158
159
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
160
161
162
163
164
165
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

166
167
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
168

169
        self.to_json_file(output_config_file)
Pedro Cuenca's avatar
Pedro Cuenca committed
170
        logger.info(f"Configuration saved in {output_config_file}")
171

172
173
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
174
            private = kwargs.pop("private", None)
175
176
177
178
179
180
181
182
183
184
185
186
187
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

188
    @classmethod
189
190
191
    def from_config(
        cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs
    ) -> Union[Self, Tuple[Self, Dict[str, Any]]]:
Patrick von Platen's avatar
Patrick von Platen committed
192
        r"""
Steven Liu's avatar
Steven Liu committed
193
        Instantiate a Python class from a config dictionary.
194
195
196

        Parameters:
            config (`Dict[str, Any]`):
Steven Liu's avatar
Steven Liu committed
197
198
                A config dictionary from which the Python class is instantiated. Make sure to only load configuration
                files of compatible classes.
199
200
201
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
202
                Can be used to update the configuration object (after it is loaded) and initiate the Python class.
Steven Liu's avatar
Steven Liu committed
203
204
                `**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
                overwrite the same named arguments in `config`.
Steven Liu's avatar
Steven Liu committed
205
206
207
208

        Returns:
            [`ModelMixin`] or [`SchedulerMixin`]:
                A model or scheduler object instantiated from a config dictionary.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        Examples:

        ```python
        >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler

        >>> # Download scheduler from huggingface.co and cache.
        >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")

        >>> # Instantiate DDIM scheduler class with same config as DDPM
        >>> scheduler = DDIMScheduler.from_config(scheduler.config)

        >>> # Instantiate PNDM scheduler class with same config as DDPM
        >>> scheduler = PNDMScheduler.from_config(scheduler.config)
        ```
        """
        # <===== TO BE REMOVED WITH DEPRECATION
        # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
        if "pretrained_model_name_or_path" in kwargs:
            config = kwargs.pop("pretrained_model_name_or_path")

        if config is None:
            raise ValueError("Please make sure to provide a config as the first positional argument.")
        # ======>

        if not isinstance(config, dict):
            deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
            if "Scheduler" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
                    " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
                    " be removed in v1.0.0."
                )
            elif "Model" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
                    f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
                    " instead. This functionality will be removed in v1.0.0."
                )
            deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
            config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)

        init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)

        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

257
258
259
260
        # add possible deprecated kwargs
        for deprecated_kwarg in cls._deprecated_kwargs:
            if deprecated_kwarg in unused_kwargs:
                init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
261

262
263
264
265
        # Return model and optionally state and/or unused_kwargs
        model = cls(**init_dict)

        # make sure to also save config parameters that might be used for compatible classes
YiYi Xu's avatar
YiYi Xu committed
266
267
268
269
        # update _class_name
        if "_class_name" in hidden_dict:
            hidden_dict["_class_name"] = cls.__name__

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        model.register_to_config(**hidden_dict)

        # add hidden kwargs of compatible classes to unused_kwargs
        unused_kwargs = {**unused_kwargs, **hidden_dict}

        if return_unused_kwargs:
            return (model, unused_kwargs)
        else:
            return model

    @classmethod
    def get_config_dict(cls, *args, **kwargs):
        deprecation_message = (
            f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
            " removed in version v1.0.0"
        )
        deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
        return cls.load_config(*args, **kwargs)

    @classmethod
290
    @validate_hf_hub_args
291
    def load_config(
292
293
294
295
296
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        return_unused_kwargs=False,
        return_commit_hash=False,
        **kwargs,
297
298
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        r"""
Steven Liu's avatar
Steven Liu committed
299
        Load a model or scheduler configuration.
Patrick von Platen's avatar
Patrick von Platen committed
300
301
302
303
304

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
305
306
307
308
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
                      [`~ConfigMixin.save_config`].
Patrick von Platen's avatar
Patrick von Platen committed
309
310

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
311
312
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Patrick von Platen's avatar
Patrick von Platen committed
313
314
315
316
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
317
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
Patrick von Platen's avatar
Patrick von Platen committed
318
319
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
320
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
321
322
323
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
324
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
325
326
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
Patrick von Platen's avatar
Patrick von Platen committed
327
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
328
329
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
330
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
331
                The subfolder location of a model file within a larger model repository on the Hub or locally.
332
            return_unused_kwargs (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
333
                Whether unused keyword arguments of the config are returned.
334
            return_commit_hash (`bool`, *optional*, defaults to `False):
Steven Liu's avatar
Steven Liu committed
335
                Whether the `commit_hash` of the loaded configuration are returned.
Patrick von Platen's avatar
Patrick von Platen committed
336

Steven Liu's avatar
Steven Liu committed
337
338
339
        Returns:
            `dict`:
                A dictionary of all the parameters stored in a JSON configuration file.
Patrick von Platen's avatar
Patrick von Platen committed
340
341

        """
342
        cache_dir = kwargs.pop("cache_dir", None)
343
344
        local_dir = kwargs.pop("local_dir", None)
        local_dir_use_symlinks = kwargs.pop("local_dir_use_symlinks", "auto")
345
346
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
347
        token = kwargs.pop("token", None)
348
349
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
350
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
351
        subfolder = kwargs.pop("subfolder", None)
352
        user_agent = kwargs.pop("user_agent", {})
Marc Sun's avatar
Marc Sun committed
353
        dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
354

355
356
        user_agent = {**user_agent, "file_type": "config"}
        user_agent = http_user_agent(user_agent)
357
358
359

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

360
361
362
363
364
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )
Marc Sun's avatar
Marc Sun committed
365
366
367
368
369
370
371
372
373
        # Custom path for now
        if dduf_entries:
            if subfolder is not None:
                raise ValueError(
                    "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                    "Please check the DDUF structure"
                )
            config_file = cls._get_config_file_from_dduf(pretrained_model_name_or_path, dduf_entries)
        elif os.path.isfile(pretrained_model_name_or_path):
374
375
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
376
            if subfolder is not None and os.path.isfile(
Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
380
381
382
            elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
383
            else:
384
385
386
387
388
389
390
391
392
393
394
395
396
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
397
                    token=token,
398
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
399
                    subfolder=subfolder,
400
                    revision=revision,
401
402
                    local_dir=local_dir,
                    local_dir_use_symlinks=local_dir_use_symlinks,
403
                )
404
405
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
406
407
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
408
                    " token having permission to this repo with `token` or log in with `huggingface-cli login`."
409
410
411
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
412
413
414
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
415
416
417
418
419
420
421
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
422
423
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
424
425
426
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
431
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
432
433
434
435
436
437
438
439
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
440
        try:
Marc Sun's avatar
Marc Sun committed
441
            config_dict = cls._dict_from_json_file(config_file, dduf_entries=dduf_entries)
442
443

            commit_hash = extract_commit_hash(config_file)
444
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
445
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
446

447
448
449
450
451
        if not (return_unused_kwargs or return_commit_hash):
            return config_dict

        outputs = (config_dict,)

452
        if return_unused_kwargs:
453
454
455
456
            outputs += (kwargs,)

        if return_commit_hash:
            outputs += (commit_hash,)
457

458
        return outputs
459

460
    @staticmethod
461
462
    def _get_init_keys(input_class):
        return set(dict(inspect.signature(input_class.__init__).parameters).keys())
463

patil-suraj's avatar
patil-suraj committed
464
465
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
466
467
468
469
        # Skip keys that were not present in the original config, so default __init__ values were used
        used_defaults = config_dict.get("_use_default_values", [])
        config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}

470
        # 0. Copy origin config dict
471
        original_dict = dict(config_dict.items())
472

473
474
        # 1. Retrieve expected config attributes from __init__ signature
        expected_keys = cls._get_init_keys(cls)
475
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
476
477
478
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
479
        # remove flax internal keys
480
481
482
483
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

484
        # 2. Remove attributes that cannot be expected from expected config attributes
Patrick von Platen's avatar
Patrick von Platen committed
485
486
487
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
488
489
490
491

        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])

492
493
494
495
496
        if cls.has_compatibles:
            compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
        else:
            compatible_classes = []

497
498
499
500
501
502
503
504
505
        expected_keys_comp_cls = set()
        for c in compatible_classes:
            expected_keys_c = cls._get_init_keys(c)
            expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
        expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
        config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}

        # remove attributes from orig class that cannot be expected
        orig_cls_name = config_dict.pop("_class_name", cls.__name__)
506
507
508
509
510
        if (
            isinstance(orig_cls_name, str)
            and orig_cls_name != cls.__name__
            and hasattr(diffusers_library, orig_cls_name)
        ):
511
512
513
            orig_cls = getattr(diffusers_library, orig_cls_name)
            unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
            config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
514
515
516
517
        elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
            raise ValueError(
                "Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
            )
518
519
520
521

        # remove private attributes
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

522
523
524
        # remove quantization_config
        config_dict = {k: v for k, v in config_dict.items() if k != "quantization_config"}

525
        # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
patil-suraj's avatar
patil-suraj committed
526
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
527
        for key in expected_keys:
528
529
530
531
532
            # if config param is passed to kwarg and is present in config dict
            # it should overwrite existing config dict key
            if key in kwargs and key in config_dict:
                config_dict[key] = kwargs.pop(key)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
533
534
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
535
536
537
538
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
539

540
        # 4. Give nice warning if unexpected values have been passed
541
542
543
544
545
546
547
        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
548
        # 5. Give nice info if config attributes are initialized to default because they have not been passed
patil-suraj's avatar
patil-suraj committed
549
        passed_keys = set(init_dict.keys())
550
        if len(expected_keys - passed_keys) > 0:
551
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
552
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
553
            )
554

555
556
557
        # 6. Define unused keyword arguments
        unused_kwargs = {**config_dict, **kwargs}

558
        # 7. Define "hidden" config parameters that were saved for compatible classes
559
        hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
560
561

        return init_dict, unused_kwargs, hidden_config_dict
Patrick von Platen's avatar
Patrick von Platen committed
562

563
    @classmethod
Marc Sun's avatar
Marc Sun committed
564
565
566
567
568
569
570
571
    def _dict_from_json_file(
        cls, json_file: Union[str, os.PathLike], dduf_entries: Optional[Dict[str, DDUFEntry]] = None
    ):
        if dduf_entries:
            text = dduf_entries[json_file].read_text()
        else:
            with open(json_file, "r", encoding="utf-8") as reader:
                text = reader.read()
572
573
        return json.loads(text)

anton-l's avatar
anton-l committed
574
    def __repr__(self):
575
        return f"{self.__class__.__name__} {self.to_json_string()}"
576

577
578
    @property
    def config(self) -> Dict[str, Any]:
579
580
581
582
583
584
        """
        Returns the config of the class as a frozen dictionary

        Returns:
            `Dict[str, Any]`: Config of the class.
        """
Patrick von Platen's avatar
Patrick von Platen committed
585
        return self._internal_dict
586

587
    def to_json_string(self) -> str:
588
        """
Steven Liu's avatar
Steven Liu committed
589
        Serializes the configuration instance to a JSON string.
590
591

        Returns:
Steven Liu's avatar
Steven Liu committed
592
593
            `str`:
                String containing all the attributes that make up the configuration instance in JSON format.
594
        """
595
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
596
597
598
        config_dict["_class_name"] = self.__class__.__name__
        config_dict["_diffusers_version"] = __version__

599
600
601
        def to_json_saveable(value):
            if isinstance(value, np.ndarray):
                value = value.tolist()
vincedovy's avatar
vincedovy committed
602
603
            elif isinstance(value, Path):
                value = value.as_posix()
604
605
            return value

606
607
608
609
610
611
612
        if "quantization_config" in config_dict:
            config_dict["quantization_config"] = (
                config_dict.quantization_config.to_dict()
                if not isinstance(config_dict.quantization_config, dict)
                else config_dict.quantization_config
            )

613
        config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
614
        # Don't save "_ignore_files" or "_use_default_values"
Patrick von Platen's avatar
Patrick von Platen committed
615
        config_dict.pop("_ignore_files", None)
616
        config_dict.pop("_use_default_values", None)
617
618
        # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
        _ = config_dict.pop("_pre_quantization_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
619

620
621
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

622
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
623
        """
Steven Liu's avatar
Steven Liu committed
624
        Save the configuration instance's parameters to a JSON file.
625
626
627

        Args:
            json_file_path (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
628
                Path to the JSON file to save a configuration instance's parameters.
629
630
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
631
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
632

Marc Sun's avatar
Marc Sun committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    @classmethod
    def _get_config_file_from_dduf(cls, pretrained_model_name_or_path: str, dduf_entries: Dict[str, DDUFEntry]):
        # paths inside a DDUF file must always be "/"
        config_file = (
            cls.config_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, cls.config_name])
        )
        if config_file not in dduf_entries:
            raise ValueError(
                f"We did not manage to find the file {config_file} in the dduf file. We only have the following files {dduf_entries.keys()}"
            )
        return config_file

Patrick von Platen's avatar
Patrick von Platen committed
647

648
def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
653
654
655
656
657
658
659
660

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
661
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
686
687
688

        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
689
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
690

691
        new_kwargs = {**config_init_kwargs, **new_kwargs}
692
        getattr(self, "register_to_config")(**new_kwargs)
693
        init(self, *args, **init_kwargs)
694
695

    return inner_init
696
697
698
699
700
701
702
703
704
705
706
707
708
709


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
710
        init_kwargs = dict(kwargs.items())
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
726
727
728
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
729
730
731
732
733
734

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

735
736
        # Take note of the parameters that were not present in the loaded config
        if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
737
            new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
738

739
740
741
742
743
        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls
744
745
746
747
748
749
750
751
752
753


class LegacyConfigMixin(ConfigMixin):
    r"""
    A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
754
        # To prevent dependency import problem.
755
756
757
758
759
760
        from .models.model_loading_utils import _fetch_remapped_cls_from_config

        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

        return remapped_class.from_config(config, return_unused_kwargs, **kwargs)