test_pipelines.py 69.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionOnnxPipeline,
44
    StableDiffusionPipeline,
45
    UNet2DConditionModel,
46
    UNet2DModel,
47
    VQModel,
48
49
)
from diffusers.pipeline_utils import DiffusionPipeline
50
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
51
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
52
53
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
54
55
56
57
58


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
59
60
61
62
63
64
65
66
67
68
69
70
71
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
72
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
73
74
75
76
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
77
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
78
79
80
81
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


82
class PipelineFastTests(unittest.TestCase):
83
84
85
86
87
88
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
172
            return images, [False] * len(images)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

191
192
193
194
195
196
197
198
199
200
201
    def test_pipeline_fp16_cpu_error(self):
        model = self.dummy_uncond_unet
        scheduler = DDPMScheduler(num_train_timesteps=10)
        pipe = DDIMPipeline(model.half(), scheduler)

        if str(torch_device) in ["cpu", "mps"]:
            self.assertRaises(ValueError, pipe.to, torch_device)
        else:
            # moving the pipeline to GPU should work
            pipe.to(torch_device)

202
203
    def test_ddim(self):
        unet = self.dummy_uncond_unet
204
        scheduler = DDIMScheduler()
205
206
207

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
208
        ddpm.set_progress_bar_config(disable=None)
209

210
211
212
213
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

214
        generator = torch.manual_seed(0)
215
216
217
218
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
219
220

        image_slice = image[0, -3:, -3:, -1]
221
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
222
223
224
225
226

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
227
228
229
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
230
231
232

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
233
        scheduler = PNDMScheduler()
234
235
236

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
237
        pndm.set_progress_bar_config(disable=None)
238
239
240
241

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

242
        generator = torch.manual_seed(0)
243
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
244
245

        image_slice = image[0, -3:, -3:, -1]
246
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
247
248
249
250

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
251
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
252
253
254

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
255
        scheduler = DDIMScheduler()
256
257
258
259
260
261
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
262
        ldm.set_progress_bar_config(disable=None)
263
264

        prompt = "A painting of a squirrel eating a burger"
265
266
267
268
269
270
271
272

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy")[
                "sample"
            ]

273
274
275
276
277
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

278
279
280
281
282
283
284
285
286
287
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

288
        image_slice = image[0, -3:, -3:, -1]
289
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
290
291
292
293

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
294
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
295
296

    def test_stable_diffusion_ddim(self):
297
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
321
        sd_pipe = sd_pipe.to(device)
322
        sd_pipe.set_progress_bar_config(disable=None)
323
324

        prompt = "A painting of a squirrel eating a burger"
325

326
327
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
328
        image = output.images
329

330
331
332
333
334
335
336
337
338
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
339
340

        image_slice = image[0, -3:, -3:, -1]
341
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
342
343
344

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
345

346
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
347
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            height=536,
            width=536,
            num_inference_steps=2,
            output_type="np",
        )
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 134, 134, 3)
        expected_slice = np.array([0.7834, 0.5488, 0.5781, 0.46, 0.3609, 0.5369, 0.542, 0.4855, 0.5557])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

398
    def test_stable_diffusion_pndm(self):
399
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
400
        unet = self.dummy_cond_unet
401
        scheduler = PNDMScheduler(skip_prk_steps=True)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
416
        sd_pipe = sd_pipe.to(device)
417
        sd_pipe.set_progress_bar_config(disable=None)
418
419

        prompt = "A painting of a squirrel eating a burger"
420
421
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
422

423
424
425
426
427
428
429
430
431
432
433
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
434
435

        image_slice = image[0, -3:, -3:, -1]
436
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
437
438
439
440

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
441
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
442
443

    def test_stable_diffusion_k_lms(self):
444
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
461
        sd_pipe = sd_pipe.to(device)
462
        sd_pipe.set_progress_bar_config(disable=None)
463
464

        prompt = "A painting of a squirrel eating a burger"
465
466
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
467

468
469
470
471
472
473
474
475
476
477
478
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
479
480

        image_slice = image[0, -3:, -3:, -1]
481
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
482
483
484
485

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
486
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

520
521
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
522
        scheduler = ScoreSdeVeScheduler()
523
524
525

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
526
        sde_ve.set_progress_bar_config(disable=None)
527

528
529
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
530

531
532
533
534
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
535
536

        image_slice = image[0, -3:, -3:, -1]
537
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
538
539
540
541

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
542
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
543
544
545

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
546
        scheduler = DDIMScheduler()
547
548
549
550
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
551
        ldm.set_progress_bar_config(disable=None)
552

553
554
555
556
557
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

558
        generator = torch.manual_seed(0)
559
560
561
562
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
563
564

        image_slice = image[0, -3:, -3:, -1]
565
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
566
567
568
569

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
570
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
571
572
573

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
574
        scheduler = KarrasVeScheduler()
575
576
577

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
578
        pipe.set_progress_bar_config(disable=None)
579
580

        generator = torch.manual_seed(0)
581
582
583
584
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
585
586

        image_slice = image[0, -3:, -3:, -1]
587
588
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

589
590
591
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
592
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
593
594

    def test_stable_diffusion_img2img(self):
595
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
596
        unet = self.dummy_cond_unet
597
        scheduler = PNDMScheduler(skip_prk_steps=True)
598
599
600
601
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

602
        init_image = self.dummy_image.to(device)
603
604
605
606
607
608
609
610
611
612
613

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
614
        sd_pipe = sd_pipe.to(device)
615
        sd_pipe.set_progress_bar_config(disable=None)
616
617

        prompt = "A painting of a squirrel eating a burger"
618
619
620
621
622
623
624
625
626
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
627

628
629
630
631
632
633
634
635
636
637
638
639
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
640
641

        image_slice = image[0, -3:, -3:, -1]
642
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
643
644
645
646

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
647
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
648

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
683
        image = output.images
684

685
686
687
688
689
690
691
692
693
694
695
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
696
697

        image_slice = image[0, -3:, -3:, -1]
698
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
699
700
701
702

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
703
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
704

705
    def test_stable_diffusion_inpaint(self):
706
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
707
        unet = self.dummy_cond_unet
708
        scheduler = PNDMScheduler(skip_prk_steps=True)
709
710
711
712
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

713
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
714
715
716
717
718
719
720
721
722
723
724
725
726
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
727
        sd_pipe = sd_pipe.to(device)
728
        sd_pipe.set_progress_bar_config(disable=None)
729
730

        prompt = "A painting of a squirrel eating a burger"
731
732
733
734
735
736
737
738
739
740
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
741

742
743
744
745
746
747
748
749
750
751
752
753
754
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
755
756

        image_slice = image[0, -3:, -3:, -1]
757
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
758
759
760
761

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
762
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
763

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    def test_stable_diffusion_num_images_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images

        assert images.shape == (1, 128, 128, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images

        assert images.shape == (batch_size, 128, 128, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (num_images_per_prompt, 128, 128, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 128, 128, 3)

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

    def test_stable_diffusion_inpaint_num_images_per_prompt(self):
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

960

961
class PipelineTesterMixin(unittest.TestCase):
962
963
964
965
966
967
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

989
990
991
992
993
994
995
    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, [False] * len(images)

        return check

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
1010
        ddpm.to(torch_device)
1011
        ddpm.set_progress_bar_config(disable=None)
1012
1013
1014
1015

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
1016
            new_ddpm.to(torch_device)
1017
1018

        generator = torch.manual_seed(0)
1019
        image = ddpm(generator=generator, output_type="numpy").images
1020

1021
        generator = generator.manual_seed(0)
1022
        new_image = new_ddpm(generator=generator, output_type="numpy").images
1023
1024
1025
1026
1027
1028
1029

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1030
        scheduler = DDPMScheduler(num_train_timesteps=10)
1031

1032
1033
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
1034
        ddpm.set_progress_bar_config(disable=None)
1035
1036
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1037
        ddpm_from_hub.set_progress_bar_config(disable=None)
1038
1039

        generator = torch.manual_seed(0)
1040
        image = ddpm(generator=generator, output_type="numpy").images
1041

1042
        generator = generator.manual_seed(0)
1043
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1044
1045
1046
1047
1048
1049
1050

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1051
1052
        scheduler = DDPMScheduler(num_train_timesteps=10)

1053
1054
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
1055
1056
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
1057
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1058

1059
1060
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1061
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1062
1063

        generator = torch.manual_seed(0)
1064
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
1065

1066
        generator = generator.manual_seed(0)
1067
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1068
1069
1070
1071
1072
1073
1074
1075

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
1076
        pipe.to(torch_device)
1077
        pipe.set_progress_bar_config(disable=None)
1078
1079

        generator = torch.manual_seed(0)
1080
        images = pipe(generator=generator, output_type="numpy").images
1081
1082
1083
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1084
        images = pipe(generator=generator, output_type="pil").images
1085
1086
1087
1088
1089
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1090
        images = pipe(generator=generator).images
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
1102
        ddpm.to(torch_device)
1103
        ddpm.set_progress_bar_config(disable=None)
1104
1105

        generator = torch.manual_seed(0)
1106
        image = ddpm(generator=generator, output_type="numpy").images
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
1122
        ddpm.to(torch_device)
1123
        ddpm.set_progress_bar_config(disable=None)
1124
1125

        generator = torch.manual_seed(0)
1126
        image = ddpm(generator=generator, output_type="numpy").images
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1139
        scheduler = DDIMScheduler()
1140
1141

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
1142
        ddim.to(torch_device)
1143
        ddim.set_progress_bar_config(disable=None)
1144
1145

        generator = torch.manual_seed(0)
1146
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1159
        scheduler = PNDMScheduler()
1160
1161

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
1162
        pndm.to(torch_device)
1163
        pndm.set_progress_bar_config(disable=None)
1164
        generator = torch.manual_seed(0)
1165
        image = pndm(generator=generator, output_type="numpy").images
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1176
        ldm.to(torch_device)
1177
        ldm.set_progress_bar_config(disable=None)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1194
        ldm.to(torch_device)
1195
        ldm.set_progress_bar_config(disable=None)
1196
1197
1198

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
1199
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
1211
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1212
        sd_pipe = sd_pipe.to(torch_device)
1213
        sd_pipe.set_progress_bar_config(disable=None)
1214
1215
1216
1217
1218
1219
1220
1221

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

1222
        image = output.images
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
1233
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1234
        sd_pipe = sd_pipe.to(torch_device)
1235
        sd_pipe.set_progress_bar_config(disable=None)
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
1251
        image = output.images
1252
1253
1254
1255

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1256
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
1257
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1258
1259
1260
1261
1262
1263
1264
1265
1266

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
1267
        sde_ve.to(torch_device)
1268
        sde_ve.set_progress_bar_config(disable=None)
1269

1270
1271
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
1272
1273
1274
1275
1276

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

1277
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
1278
1279
1280
1281
1282
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
1283
        ldm.to(torch_device)
1284
        ldm.set_progress_bar_config(disable=None)
1285
1286

        generator = torch.manual_seed(0)
1287
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1300
1301
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1302
1303

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1304
        ddpm.to(torch_device)
1305
        ddpm.set_progress_bar_config(disable=None)
1306
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1307
        ddim.to(torch_device)
1308
        ddim.set_progress_bar_config(disable=None)
1309
1310

        generator = torch.manual_seed(0)
1311
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1312
1313

        generator = torch.manual_seed(0)
1314
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1315
1316
1317
1318
1319
1320
1321
1322
1323

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1324
1325
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1326
1327

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1328
        ddpm.to(torch_device)
1329
        ddpm.set_progress_bar_config(disable=None)
1330

1331
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1332
        ddim.to(torch_device)
1333
        ddim.set_progress_bar_config(disable=None)
1334
1335

        generator = torch.manual_seed(0)
1336
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
1350
        scheduler = KarrasVeScheduler()
1351
1352

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1353
        pipe.to(torch_device)
1354
        pipe.set_progress_bar_config(disable=None)
1355
1356

        generator = torch.manual_seed(0)
1357
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1358
1359
1360

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
1361
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
1362
1363
1364
1365
1366
1367
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
1368
        pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device)
1369
        pipe.set_progress_bar_config(disable=None)
1370
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler")
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1383
1384
1385

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1386
1387
1388
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1389
1390
1391
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

1424
1425
1426
1427
1428
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_pipeline_fp16(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1429
1430
1431
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output_chunked = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        )
        image_chunked = output_chunked.images

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # Make sure results are close enough
        diff = np.abs(image_chunked.flatten() - image.flatten())
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1455
1456
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1457
1458
1459
1460
    def test_stable_diffusion_text2img_pipeline(self):
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/text2img/astronaut_riding_a_horse.png"
1461
        )
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
        image = output.images[0]
1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1495
1496

        model_id = "CompVis/stable-diffusion-v1-4"
1497
1498
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
1499
            safety_checker=self.dummy_safety_checker,
1500
        )
1501
        pipe.to(torch_device)
1502
        pipe.set_progress_bar_config(disable=None)
1503
        pipe.enable_attention_slicing()
1504
1505
1506
1507

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1508
1509
1510
1511
1512
1513
1514
1515
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1516
        image = output.images[0]
1517

1518
        assert image.shape == (512, 768, 3)
1519
1520
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1521
1522
1523

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1524
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1525
1526
1527
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
1528
        )
1529
1530
1531
1532
1533
1534
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape_k_lms.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1535
1536
1537
1538

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1539
1540
1541
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
1542
            safety_checker=self.dummy_safety_checker,
1543
        )
1544
1545
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1546
        pipe.enable_attention_slicing()
1547
1548
1549
1550

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1551
1552
1553
1554
1555
1556
1557
1558
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1559
        image = output.images[0]
1560

1561
        assert image.shape == (512, 768, 3)
1562
1563
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1564
1565
1566

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1567
    def test_stable_diffusion_inpaint_pipeline(self):
1568
1569
1570
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
1571
        )
1572
1573
1574
1575
1576
1577
1578
1579
1580
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1581
1582

        model_id = "CompVis/stable-diffusion-v1-4"
1583
1584
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
1585
            safety_checker=self.dummy_safety_checker,
1586
        )
1587
        pipe.to(torch_device)
1588
        pipe.set_progress_bar_config(disable=None)
1589
        pipe.enable_attention_slicing()
1590

1591
        prompt = "A red cat sitting on a park bench"
1592
1593

        generator = torch.Generator(device=torch_device).manual_seed(0)
1594
1595
1596
1597
1598
1599
1600
1601
1602
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench_k_lms.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1649
        image = output.images[0]
1650

1651
1652
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2
1653
1654
1655

    @slow
    def test_stable_diffusion_onnx(self):
1656
        sd_pipe = StableDiffusionOnnxPipeline.from_pretrained(
1657
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
1658
        )
1659
1660
1661

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
1662
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
1663
1664
1665
1666
1667
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1668
        expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
1669
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3

        test_callback_fn.has_been_called = False

        pipe = StableDiffusionPipeline.from_pretrained(
1692
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Andromeda galaxy in a bottle"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 51

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
1738
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.5472, 1.1218, -0.5505, -0.9390, -1.0794, 0.4063, 0.5158, 0.6429, -1.5246]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
1791
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                mask_image=mask_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    def test_stable_diffusion_onnx_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
1827
                    [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
1828
1829
1830
1831
1832
1833
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3

        test_callback_fn.has_been_called = False

        pipe = StableDiffusionOnnxPipeline.from_pretrained(
1834
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
1835
1836
1837
1838
1839
1840
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "Andromeda galaxy in a bottle"

        np.random.seed(0)
1841
        pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
1842
        assert test_callback_fn.has_been_called
1843
        assert number_of_steps == 6