scheduling_ddim.py 15.6 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
27
28
29
30
from .scheduling_utils import SchedulerMixin


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
50
    """
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
53

54
55
56
57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
                     prevent singularities.
62
63
64

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
65
    """
66

67
    def alpha_bar(time_step):
68
69
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

70
71
72
73
74
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
75
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
76
77


Patrick von Platen's avatar
Patrick von Platen committed
78
class DDIMScheduler(SchedulerMixin, ConfigMixin):
79
80
81
82
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
95
96
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
97
98
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
99
100
101
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
102
103
104
105
106
107
108
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
109
110
111

    """

112
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
113

114
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    def __init__(
        self,
117
118
119
120
121
122
123
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
124
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
125
    ):
126
        if trained_betas is not None:
127
            self.betas = torch.from_numpy(trained_betas)
128
        elif beta_schedule == "linear":
129
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
130
131
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
132
133
134
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
135
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
136
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
137
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

141
        self.alphas = 1.0 - self.betas
142
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
143
144
145

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
146
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
147
        # whether we use the final alpha of the "non-previous" one.
148
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
149

150
151
152
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

153
        # setable values
154
        self.num_inference_steps = None
155
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

171
172
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
173
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177
178
179
180
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

181
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
182
183
184
185
186
187
188
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
189
        self.num_inference_steps = num_inference_steps
190
191
192
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
193
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
194
        self.timesteps = torch.from_numpy(timesteps).to(device)
195
        self.timesteps += self.config.steps_offset
196
197
198

    def step(
        self,
199
        model_output: torch.FloatTensor,
200
        timestep: int,
201
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
202
203
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
204
        generator=None,
205
        variance_noise: Optional[torch.FloatTensor] = None,
206
        return_dict: bool = True,
207
    ) -> Union[DDIMSchedulerOutput, Tuple]:
208
209
210
211
212
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
213
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
214
            timestep (`int`): current discrete timestep in the diffusion chain.
215
            sample (`torch.FloatTensor`):
216
217
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
218
219
220
221
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
222
            generator: random number generator.
223
224
225
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
226
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
227
228

        Returns:
229
230
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
231
            returning a tuple, the first element is the sample tensor.
232
233

        """
234
235
236
237
238
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
239
240
241
242
243
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
244
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
245
246
        # - std_dev_t -> sigma_t
        # - eta -> η
247
        # - pred_sample_direction -> "direction pointing to x_t"
248
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
249

250
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
251
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
252
253

        # 2. compute alphas, betas
254
        alpha_prod_t = self.alphas_cumprod[timestep]
255
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
256

Patrick von Platen's avatar
Patrick von Platen committed
257
258
        beta_prod_t = 1 - alpha_prod_t

259
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
260
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
261
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
262
263

        # 4. Clip "predicted x_0"
264
        if self.config.clip_sample:
265
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
266
267
268

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
269
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
270
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
271

Patrick von Platen's avatar
Patrick von Platen committed
272
273
274
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
275

Patrick von Platen's avatar
Patrick von Platen committed
276
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
277
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
278
279

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
280
281
282
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
283
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
Patrick von Platen's avatar
Patrick von Platen committed
284
            device = model_output.device
285
286
287
288
289
290
291
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
292
293
294
295
296
297
298
299
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                    variance_noise = variance_noise.to(device)
                else:
                    variance_noise = torch.randn(
                        model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                    )
300
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
301
302

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
303

304
305
306
        if not return_dict:
            return (prev_sample,)

307
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
308

309
310
    def add_noise(
        self,
311
312
313
314
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
315
316
317
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
318

319
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
320
321
322
323
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

324
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
325
326
327
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
328
329
330
331

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
332
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
333
        return self.config.num_train_timesteps